0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Article |

Prediction of the Risk of Comorbid Alcoholism in Schizophrenia by Interaction of Common Genetic Variants in the Corticotropin-Releasing Factor System FREE

Katja Ribbe, MSc; Verena Ackermann, MSc; Judith Schwitulla, MSc; Martin Begemann, MD; Sergi Papiol, PhD; Sabrina Grube, PhD; Swetlana Sperling, BSc; Heidi Friedrichs, PhD; Olaf Jahn, PhD; Inge Sillaber, PhD; Olaf Gefeller, PhD; Henning Krampe, PhD; Hannelore Ehrenreich, MD, DVM
[+] Author Affiliations

Author Affiliations: Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine (Mss Ribbe, Ackermann, and Sperling and Drs Begemann, Papiol, Grube, Friedrichs, Jahn, Sillaber, and Ehrenreich) and DFG Research Center for Molecular Physiology of the Brain (Drs Papiol, Jahn, and Ehrenreich), Göttingen, Department of Medical Informatics, Biometry, and Epidemiology, University of Erlangen-Nuremberg, Erlangen (Ms Schwitulla and Dr Gefeller), and Department of Anaesthesiology and Intensive Care Medicine, Charité, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin (Dr Krampe), Germany.


Arch Gen Psychiatry. 2011;68(12):1247-1256. doi:10.1001/archgenpsychiatry.2011.100.
Text Size: A A A
Published online

Context Stress plays a major role in the development of comorbid alcohol use disorder (AUD). In turn, AUD worsens the outcome of psychiatric patients with respect to global disease severity, social situation, and socioeconomic burden. Prediction of persons at risk for AUD is crucial for future preventive and therapeutic strategies.

Objective To investigate whether genetic variants of the corticotropin-releasing factor system or their interaction influence the risk of developing AUD in chronic disease populations.

Design Genotype analysis comprising selected single-nucleotide polymorphisms within the CRHR1 and CRHBP genes in patients with schizophrenia and in a nonschizophrenic psychiatric disease control sample should allow the extraction of predictors of comorbid AUD. Gene expression (messenger RNA) analysis in peripheral blood mononuclear cells was performed to gain the first mechanistic insight.

Setting An ideal setup for this study was the Göttingen Research Association for Schizophrenia Data Collection of schizophrenic patients, specifically intended to enable association of genetic information with quantifiable phenotypes in a phenotype-based genetic association study.

Patients A total of 1037 schizophrenic patients (Göttingen Research Association for Schizophrenia sample), 80 nonschizophrenic psychiatric disease controls as a small replicate sample, and a case-control study including 1141 healthy subjects.

Main Outcome Measures Association of CRHR1 and CRHBP genotypes with the following: (1) AUD; (2) a newly developed alcoholism severity score comprising 5 AUD-relevant variables; and (3) quantitative CRHR1 and CRHBP messenger RNA expression.

Results An interaction of CRHR1 rs110402 and CRHBP rs3811939 predicts high risk of comorbid AUD in schizophrenic patients (odds ratio = 2.27; 95% confidence interval, 1.56-3.30; P < .001) as well as psychiatric disease controls (odds ratio = 4.02; 95% confidence interval, 0.95-17.05; P = .06) and leads to the highest CRHR1/CRHBP messenger RNA ratio (P = .02; dysbalanced stress axis).

Conclusions The high predictive value of a genetic interaction within the stress axis for the risk of comorbid AUD may be used for novel preventive and individualized therapeutic approaches.

Figures in this Article

Alcohol use disorders (AUDs) are severe, complex illnesses with prevalence rates of up to 30%.13 Treatment of AUD is hampered by high relapse rates after clinical detoxification and months of abstinence.46 In psychiatric diseases like schizophrenia, comorbid AUDs reach an even more dramatic prevalence. In the Epidemiologic Catchment Area Study, 47% of schizophrenic patients fulfilled criteria of any substance use disorder.3 Even though numbers become smaller once AUD alone is considered (34%), individuals with schizophrenia are at high risk for developing AUD.710 Comorbid AUD in turn deteriorates the course of disease and outcome, eg, it causes a higher percentage of housing problems,11 disability,12 and hospital admissions.13

Any severe disease poses a tremendous stress on the affected individual. The high amount of comorbid substance abuse in schizophrenia may be the result of a dysfunctional way of coping with this stress. The use of alcohol as an easily available tool to reduce tension and handle negative emotions in the sense of self-treatment plays an essential role in AUD etiology.1418 Both inborn and acquired capacities to respond to stress are likely to influence this process. Of central importance for a coordinated stress response in mammals is the hypothalamus-pituitary-adrenal axis, with the corticotropin-releasing factor system playing a dominant role. Components of this highly interregulated system include corticotropin-releasing hormone (CRH),19 CRH receptors,20 and CRH-binding protein.21 The latter represents a passive ligand trap that neutralizes CRH by binding it, thereby terminating its biological actions, in contrast to its active receptor that initiates signal transduction on binding.22

While long-term alcohol consumption can induce lasting alterations within the CRH system,23,24 less is known about how genetic variation of respective genes influences development of AUD. A pivotal study in alcohol-naive mice demonstrated that Crhr1 null mutation was associated with augmented ethanol consumption on stress exposure.25 Conversely, in ethanol-dependent mice, reduction of Crhr1 activity by Crhr1 blockade or by Crhr1 null mutation led to decreased alcohol self-administration.26 In rhesus macaques, higher alcohol intake was found in animals carrying a CRH genotype conferring increased stress reactivity.27

In humans as well, the CRH system has been linked not only to depression,28,29 suicidality,30 and panic disorder31 but also to alcohol consumption and AUD.3236 Specifically, associations were described for a North American Caucasian population between AUD and 3 single-nucleotide polymorphisms (SNPs) in the CRHBP gene.32 Similarly, the Mannheim Study of Children at Risk observed relationships between CRHR1 SNPs and alcohol consumption patterns, eg, binge drinking and lifetime prevalence of drunkenness.33 Based on DSM-IV37 diagnosis only, a recent study found an association of genetic variants of the CRHR1 gene with AUD.35 Also, protective constellations of CRHR1 regarding stress-related AUD exist.34,36

This study was designed to investigate associations of genetic variants within the CRH system including their interaction with the development of AUD in a chronic disease population. Schizophrenia, a severe psychiatric disorder as a grave and persistent stressor shared by the cohort under study, should allow for defining predictors of comorbid AUD. To test this hypothesis, the Göttingen Research Association for Schizophrenia (GRAS) Data Collection was used, specifically intended to enable association of genetic information with quantifiable phenotypes in a procedure termed phenotype-based genetic association study (PGAS).38,39 Based on GRAS/PGAS, we report here for the first time to our knowledge an interactive genetic constellation within the CRH system comprising variants of CRHR1 and CRHBP with high predictive value to detect an increased risk of comorbid AUD in schizophrenic patients. Importantly, we simultaneously provide replication of this finding in a psychiatric disease control cohort purposely comprising patients with different psychiatric diagnoses excluding schizophrenia. This heterogeneous replicate sample underscores the generalizability of the revealed risk constellation for imperiled populations.

STUDY SETTING AND PARTICIPANTS
Schizophrenic Patients

Study participants were enrolled in the cross-sectional field study of GRAS as described previously.38,39 The study was approved by the Ethics Committee of the Georg-August-University, Göttingen, Germany, and review boards of participating centers, and it complies with the Declaration of Helsinki. The GRAS Data Collection comprises at present 1037 patients with confirmed DSM-IV diagnosis of schizophrenia (82.2%) or schizoaffective disorder (17.8%) examined between September 1, 2005, and November 1, 2010, in 23 collaborating centers across Germany (Table 1).38,39 Almost all of these patients were of European Caucasian descent (95.6% Caucasian, 1.6% other ethnicities, and 2.8% unknown). European Caucasian persons are a genetically homogeneous group with low average levels of genetic differentiation compared with other human populations (no strong influence on association results to be expected).4042 Specifically, the German population is very homogeneous, with low genetic differentiation along a north-south gradient within Germany. In fact, population substructure within Germany is too low to be detectable without prior information on subpopulation membership.43 Therefore, for the purpose of our study, population stratification was not essential.

Table Graphic Jump LocationTable 1. Göttingen Research Association for Schizophrenia Sample Description
Psychiatric Disease Controls

As an independent, nonschizophrenic disease control (replicate) sample, 80 patients with mental disorders other than schizophrenia (57.5% affective disorder, 16.3% substance use disorder [including multiple drug or cannabis use], 10.0% anxiety disorder, 6.3% personality disorder, 3.7% delusional disorder, 3.7% organic mental disorders, and 2.5% mental retardation—all diagnosed according to DSM-IV) were recruited in Göttingen (eTable 1).

Healthy Controls

Healthy controls exclusively for the genetic case-control part of the study were voluntary blood donors (n = 1141) recruited according to national guidelines for blood donation. As such, they widely fulfill health criteria, ensured by broad predonation screening containing standardized questionnaires, interviews, and determinations of hemoglobin level, blood pressure, pulse, and body temperature. Comparable to the patient population, almost all control subjects were of European Caucasian descent (97.8% Caucasian, 2.0% other ethnicities, and 0.2% unknown).38,39

PHENOTYPING

Comprehensive interviews, testing, and clinical ratings were conducted by one and the same traveling team of trained examiners (psychiatrists, psychologists) using the GRAS Manual.38,39 Additionally, records and discharge letters of every patient were used to validate and complement the patient's (and, if applicable, relative's or caretaker’s) statements.

Sociodemographic and Clinical Variables

Semistructured interviews delivered biographic data, family background, level of education, and occupational history. Diagnoses of schizophrenia or schizoaffective disorders were based on the Structured Clinical Interview for DSM-IV Disorders and substantiated by information from medical records, which also conveyed numbers and durations of hospital stays and age at onset of schizophrenia and prodrome. Psychopathological state, symptom severity, and functional outcome were evaluated by clinical ratings (Positive and Negative Syndrome Scale,44 Clinical Global Impression scale,45 and Global Assessment of Functioning37) and questionnaires (State-Trait Anxiety Inventory46 and Brief Symptom Inventory47). For appraising current depression, 2 items of the Positive and Negative Syndrome Scale general psychopathology subscale (guilt feelings and depression)48 were used, together with 2 items of the Brief Symptom Inventory (guilt feelings and thoughts of death or dying) and the Brief Symptom Inventory depression subscale. For judging the degree of anxiety, the Positive and Negative Syndrome Scale general items (anxiety, tension, and somatic concern),48 Brief Symptom Inventory (anxiety scale), and State-Trait Anxiety Inventory were used (eFigure 1).

Alcohol-Related Variables

Two main outcome measures were used: (a) the dichotomous DSM-IV AUD diagnosis summarizing alcohol abuse and dependence; and (b) a newly developed quantitative alcoholism severity score. For assessing AUD, the Structured Clinical Interview for DSM-IV Disorders (addiction section) was applied. Patient statements were confirmed and supplemented with longitudinal information (records and discharge letters). In the alcoholism severity score, 5 alcohol-relevant variables were integrated (≥3 of 5 variables were required for calculating the score): (1) numbers of alcohol-related detoxifications; (2) highest amount of regular drinking (in grams per day for≥6 months); (3) frequency of drinking (11-point scale from never to daily); (4) number of positive Structured Clinical Interview for DSM-IV Disorders items; and (5) chronicity (years of problematic alcohol use divided by age in years).49

GENOTYPING

Single-nucleotide polymorphisms in CRHR1 and CRHBP were selected, 3 of each gene, considering database information on minor allele frequencies (NCBI,50 HapMap,51 UCSC Genome Browser52) and previous reports, which had identified these SNPs to be informative3236,53 (Figure 1A). Genotyping was performed with Simple Probes (TIB Molbiol, Berlin, Germany) on a Light Cycler 480 (Roche, Mannheim, Germany) (eAppendix). Successful genotyping of the GRAS sample (n = 1037) ranged from n = 1016 to n = 1030 (average >98%), accounting for some variation of respective n numbers.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Basics of genotyping and phenotyping strategies. A, Location of selected single-nucleotide polymorphisms on CRHR1 and CRHBP genes. Coding regions are shown in black; untranslated regions, gray. kb indicates kilobases. B, Variables composing the alcoholism severity score and their intercorrelations (statistics: Pearson correlation and Cronbachα coefficient). SCID indicates Structured Clinical Interview for DSM-IV Disorders. C, Distribution of alcoholism severity score and DSM-IV alcohol use disorder (AUD) diagnoses for either alcohol abuse or alcohol dependence in the Göttingen Research Association for Schizophrenia sample of schizophrenic patients (n = 957; statistics: point-biserial correlation).

EXPRESSION ANALYSIS IN PERIPHERAL BLOOD MONONUCLEAR CELLS
Isolation of Peripheral Blood Mononuclear Cells

Blood of a number of schizophrenic GRAS patients and psychiatric disease controls (n = 104; 64.4% male; 51.0% schizophrenic) was collected in tubes with a citrate phosphate dextrose adenine solution. Peripheral blood mononuclear cells were isolated with the Ficoll-Paque PLUS isolation procedure (GE Healthcare, München, Germany).

Quantitative Reverse Transcription–Polymerase Chain Reaction

We prepared RNA with the miRNeasy Mini Kit (Qiagen, Hilden, Germany) and used it to synthesize complementary DNA (SuperScriptIII; Invitrogen, Karlsruhe, Germany). Quantitative reverse transcription–polymerase chain reaction was performed with SYBR Green detection on the LightCycler 480 system (Roche). Cycle threshold values were standardized toβ-actin (eAppendix).

STATISTICAL ANALYSES

Group differences in categorical and continuous variables were assessed with nonparametric Mann-Whitney U andχ2 tests, respectively. Blom transformation54 was used to yield standardized values being approximately normally distributed with a mean of 0 and variance of 1. Intercorrelations and internal consistency of alcoholism severity score components were assessed using Pearson correlation coefficient and Cronbachα.55 To assess the association between alcoholism severity score and AUD (continuous and binary variable), the point-biserial correlation was calculated. Analysis of covariance (adjusted for age) was used to analyze the effect of SNPs on the standardized alcoholism severity score and its single items. For the dichotomous outcome AUD, estimation of the odds ratio (OR) and its 95% confidence interval (CI) for the effect of SNPs was performed in a logistic regression model incorporating age as an additional confounder. For all analyses, statistical significance was set to the .05 level. Statistical analyses were performed using SPSS for Windows version 17.0 statistical software (SPSS Inc, Chicago, Illinois) and R version 2.10.1 statistical software (R Foundation, Vienna, Austria).

AUD DIAGNOSIS IN THE GRAS POPULATION OF SCHIZOPHRENIC PATIENTS

To prepare for genotype-phenotype analysis, patients had to be comprehensively evaluated regarding comorbid AUD. Of all 1037 GRAS patients, 364 (35.1%) fulfill AUD criteria, ie, alcohol abuse (n = 251 [24.2%]) or alcohol dependence (n = 113 [10.9%]) according to DSM-IV. Basic sociodemographic information, general and schizophrenia-related clinical readouts, and addiction-specific variables in all patients and in AUD vs non-AUD subgroups are presented in Table 1. The AUD group is younger, is predominantly male, has fewer years of education, and is characterized by a higher unemployment rate. The patients with AUD have an earlier age at prodrome and age at onset of the first psychotic episode, more hospitalizations (reflected also by a higher proportion assessed here as inpatients), and lower level of functioning (according to the Global Assessment of Functioning). In addition to expected differences in AUD-related variables, groups differ regarding current smoking status, cigarettes per day, and other drug use, including cannabis, benzodiazepines, or multiple drug disorders according to DSM-IV.

OPERATIONALIZATION OF THE ALCOHOLISM SEVERITY SCORE IN THE GRAS SAMPLE

For more detailed genotype-phenotype associations, the more refined alcoholism severity score on top of the dichotomous AUD diagnosis was created. Intercorrelations between selected target variables are presented in Figure 1B. A high internal consistency56 of these variables (Cronbachα = .878) justifies their handling as an alcoholism severity score. However, whereas diagnosis of AUD was available for all 1037 GRAS patients, the alcoholism severity score could be determined for only 957 patients (for 80 patients,<3 of 5 variables were obtainable). Correlation between AUD and the alcoholism severity score amounts to r = 0.85 (Figure 1C).

CASE-CONTROL STUDY

To explore a potential role of the 3 CRHR1 and 3 CRHBP SNPs as genetic risk factors for schizophrenia, a case-control study was conducted. No significant difference in distribution of genotypes between cases (GRAS patients, n = 1037) and healthy controls (n = 1141) was found for any of the 6 SNPs (eTable 2).

PHENOTYPE-BASED GENETIC ASSOCIATION STUDY
GRAS Patients

The hypothesis-guided PGAS approach started with association analyses of alcohol-relevant readouts with selected SNPs (Table 2). Only CRHR1 SNP1 (rs110402) turned out to be associated with the alcoholism severity score (F2,938 = 5.60; P = .004), whereas all other markers showed no associations or only tendencies, eg, SNP1 of CRHBP (rs3811939) (F2,950 = 2.32; P = .10). When considering associations of SNPs with individual target variables, however, more hits arise: all 3 SNPs of CRHR1 and SNP1 of CRHBP are associated with consumed alcohol in grams per day. Genotype-related distributions of raw data are displayed in eFigure 2. No associations between the 6 SNPs and disease-related or disease-unrelated control variables were detected. Neither anxiety nor depression score yielded significant results. Except for numbers of cigarettes (F2,991 = 3.93; P = .02), no associations between any of the SNPs and other drugs were uncovered. Importantly, after correction for alcoholism severity score (as a covariate), the significant relationship between smoking and CRHR1 SNP1 disappeared (F2,926 = 2.18; P = .11).

Table Graphic Jump LocationTable 2. Association of Selected Single-Nucleotide Polymorphisms of CRHR1 and CRHBP With Alcoholism Target Variables and Control Variables in the Göttingen Research Association for Schizophrenia Samplea

We next checked, based on the known biological interplay of CRHR1 and CRHBP, a potential interaction of the most prominently alcoholism severity score–associated SNP1 genotypes of each gene. Figure 2A illustrates the genotype-phenotype results for CRHR1 SNP1 (rs110402) and CRHBP SNP1 (rs3811939) separately: the TT carriers and the GG carriers, respectively, have the highest association with the alcoholism severity score. On grouping for interaction, a high-risk genotype for comorbid AUD as judged by the alcoholism severity score, consisting of homozygous T in CRHR1 SNP1 (rs110402) and homozygous G in CRHBP SNP1 (rs3811939), contrasts a significantly lower risk of all other possible combinations (F1,512 = 15.13, P < .001; F1,201 = 8.64, P = .004; F1,458 = 11.81, P = .001). The interaction between CRHR1 SNP1 and CRHBP SNP1 in the analysis of covariance model was strong (F1,935 = 6.34; P = .01) (Figure 2B). Also, on the level of AUD diagnosis, this interaction is obvious. Risk genotype carriers have a higher proportion of AUD (OR = 2.27; 95% CI, 1.56-3.30; P < .001) (Figure 2C). For comparison, CRHR1 SNP1 alone as risk factor yields an OR of 1.62 (95% CI, 1.20-2.20; P = .002), and CRHBP SNP1 has an OR of 0.89 (95% CI, 0.69-1.16; P = .40).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Phenotype-based genetic association study. A, Distribution of alcoholism severity scores in CRHR1 SNP1 genotypes and CRHBP SNP1 genotypes using analysis of covariance adjusted for age. GRAS indicates Göttingen Research Association for Schizophrenia. Data are presented as mean (SEM). B, Interaction effect between CRHR1 SNP1 and CRHBP SNP1 genotypes with respect to alcoholism severity score in the GRAS sample using analysis of covariance adjusted for age. Data are presented as mean (SEM). C, Interaction effect between CRHR1 SNP1 and CRHBP SNP1 genotypes with respect to the diagnosis of alcohol use disorder (AUD) according to DSM-IV using logistic regression analyses with age as confounder for estimating odds ratios (ORs) and 95% confidence intervals (CIs). D, Interaction effect between CRHR1 SNP1 and CRHBP SNP1 genotypes with respect to alcoholism severity score in psychiatric disease controls using analysis of covariance adjusted for age. Data are presented as mean (SEM). E, Ratio of CRHR1 and CRHBP messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMCs) dependent on genotypes (risk genotype against all others) in a total of 104 patients as well as on separation of these patients according to the diagnosis of AUD (n = 34) and non-AUD (n = 70) using Mann-Whitney U tests. Raw data of mRNA levels (normalized toβ-actin) dependent on genotype combinations are presented in the table below.

Nonschizophrenic Psychiatric Disease Controls/Replicate Sample

To explore whether a comparable risk vs nonrisk constellation would be detectable in a nonschizophrenic population, we analyzed a small psychiatric disease control sample (n = 80). This sample differs from the GRAS population (n = 1037) expectedly in several ways. Whereas the percentage of AUD is relatively comparable (40.0% vs 35.1% in the GRAS sample), disease controls have lower rates of unemployment, lower doses of antipsychotics, lower Positive and Negative Syndrome Scale subscale scores, and better functional outcome (according to the Global Assessment of Functioning) and smoke fewer cigarettes per day (eTable 1). Despite the small number and somewhat different characteristics, a pattern very similar to the GRAS sample becomes obvious in disease controls with respect to both alcoholism severity score and AUD diagnosis (Figure 2D). Again, risk genotype carriers tend to have a substantially higher alcoholism severity score compared with all other genotype combinations (F1,41 = 4.88, P = .03; F1,15 = 4.59, P = .05; F1,44 = 3.80, P = .06). Owing to the small sample size, the interaction effect of CRHR1 SNP1 and CRHBP SNP1 on alcoholism severity score just failed to reach statistical significance (F1,80 = 2.48; P = .12). Also regarding AUD diagnosis, risk genotype carriers tend to differ from noncarriers (OR = 4.02; 95% CI, 0.95-17.05; P = .06) (Figure 2C).

GENOTYPE-DEPENDENT EXPRESSION ANALYSES IN PERIPHERAL BLOOD MONONUCLEAR CELLS

To gain the first mechanistic insight, peripheral blood mononuclear cells were isolated from a number of schizophrenic GRAS patients and psychiatric disease controls (total of n = 104) available for blood sampling, and CRHR1 and CRHBP messenger RNA (mRNA) levels were quantified. As a biological estimate of ligand efficiency or activity of the CRH system, the mRNA expression ratio of CRHR1 (active receptor) and CRHBP (ligand trap) was used.

CRHR1 and CRHBP compete for binding of CRH. Whereas the former is the active receptor that mediates the effects of CRH, the latter acts as a ligand trap, catching CRH and thereby preventing the bound molecule from having a biological effect at its receptor. In other words, the ratio of active receptor and binding protein is of high importance for the quantitative biological effect of a major determinant of the stress axis. Indeed, patients carrying the risk genotype combination (TT/GG) have a significantly higher ratio of CRHR1 to CRHBP mRNA (Z = −2.31; P = .02), ie, a putative dysbalance of the CRH system (Figure 2E). Separating this subgroup into subjects with or without AUD, an almost identical pattern of genotype-dependent mRNA expression was obtained, even though it failed to reach statistical significance owing to the small sample numbers (Figure 2E). These data underscore a genotype-related rather than purely alcohol-induced mRNA expression difference.

We identified a prominent interaction of distinct variants of 2 genes of the CRH system, CRHR1 and CRHBP, predicting the risk of comorbid AUD in a chronically stressed population. In more than 1000 schizophrenic subjects, we showed that carriers of a homozygous T allele in CRHR1 rs110402 combined with a homozygous G allele in CRHBP rs3811939 are more than twice as likely to develop comorbid AUD (OR = 2.27) than carriers of all other possible genotype combinations (which may even be seen as protective regarding AUD). Moreover, we already replicated this finding in a smaller nonschizophrenic psychiatric disease control group, emphasizing the general importance of this observation for populations under chronic stress. In the case-control study, comparing frequencies of genotype distribution in healthy and schizophrenic individuals, none of these genotypes plays a role as schizophrenia risk factor.

An experimental approach to chronic stress–induced alcoholism in humans is very difficult to take. In this study, schizophrenia was used as a model of severe chronic stress in a field-study-type design. Patients with schizophrenia (as heterogeneous as this disease may be) and its social and personal consequences certainly belong to an endangered population with respect to their chronic stress level. Nevertheless, the fact that stress might be a causative factor of alcoholism in schizophrenia (and other chronic diseases) does not exclude further mechanisms leading to increased alcohol consumption in this and other disease populations. Also, we have to be aware that stress is a very complex biological system and the corticotropin system is only part of it. Therefore, the interaction detected here between CRHR1 and CRHBP will not explain each and every aspect of stress-induced alcoholism; however, it will provide clinically and prophylactically important information for those who carry the risk constellation of genotypes.

Except for SNP1 of CRHR1, single markers of CRHR1 and CRHBP show no or only the tendency of an association with AUD or the alcoholism severity score. The most prominent effect is obtained by combining genotypes CRHR1 rs110402 and CRHBP rs3811939. Importantly, gene expression levels in peripheral blood mononuclear cells reveal quantitative differences that may explain biological consequences of respective genotype combinations: the ratio of CRHR1 to CRHBP mRNA is highest in the risk constellation, independent of the presence or absence of AUD. This finding supports the primary (genetic) influence on basal gene expression in the sense of an innate dysbalanced (hyperactive) stress axis, which may be additionally challenged by long-term alcohol consumption.23,24

We note that the detected associations are restricted to AUD and do not extend to other drug use disorders, eg, cannabis use, benzodiazepine use, or polytoxicomania. An apparent association of CRHR1 rs110402 with cigarette smoking disappears after correction for AUD, underscoring the high comorbidity of smoking and AUD.57,58 Nevertheless, because nicotine is a stimulator of the stress axis59 and alcohol and nicotine dependence have an overlapping genetic background,60 this association may deserve further elucidation.

The finding of a high predictive power of 2 genotypes within the CRH system not only substantiates the biological role of stress in AUD development but may also serve as an indicator of persons at risk. Comorbid AUD adds to the negative outcome of psychiatric patients with respect to global disease severity, social situation, and socioeconomic burden.1113 Thus, intensified preventive measures for high-risk subjects and perhaps even personalized genotype-based treatment strategies61 might be desirable.

The presence of comorbid AUD in as many as 35% of the GRAS population and the devastating psychosocial and clinical consequences agree well with other reports on schizophrenic patients.1113,62 The causal role of AUD in this overall aggravated situation is emphasized by the fact that schizophrenia-typical symptoms are not different between AUD and non-AUD groups. Surprisingly, at first view, patients with AUD have an earlier age at onset of schizophrenic prodrome and first schizophrenic episode compared with patients without AUD. This finding, however, may be explained by more cannabis use disorders in patients with AUD because cannabis but not alcohol is clearly associated with earlier age at onset.63,64 Accordingly, correcting for cannabis use eliminates the association of AUD with age at onset in the GRAS population.

For decades, it has been known that AUD has a heritability of 50% to 60%.65 Regarding genetic risk factors, the genes of the CRH system and their interaction belong to a whole group of genes that predict the risk of developing alcoholism. For instance, genome-wide association studies on AUD including up to 2000 patients6671 have identified genes encoding alcohol dehydrogenase,68,71γ-aminobutyric acid A receptor,67,68 dopamine receptor,72 and serotonin receptor70 to be associated (OR < 2) with the risk of alcoholism. However, as with other complex psychiatric diseases, the diagnosis alone (as used in genome-wide association studies) is of limited value in spotting relevant genetic risk constellations and even less helpful for identifying important biological subgroups of the disorder.

Interplay between AUD and stress has been demonstrated in several animal experiments.27 First human studies indicated that CRH receptor antagonists may reduce symptom severity of depression and anxiety73 and improve resistance against psychosocial stress.74 Treatment of AUD with CRH receptor ligands is presently under study in clinical trials (eg, ClinicalTrials.gov identifier NCT01187511). Such an approach should be specifically tested in the herein delineated subgroup of at-risk individuals. Contrasting reports on other disease populations,28,31 no associations of the herein described risk genotype with depression and anxiety were found in schizophrenic patients. This negative finding may be related to the underlying disease phenotype, the instruments used, or the fact that respective symptoms were determined cross-sectionally.

To conclude, our data suggest that a distinct genotype constellation comprising 2 determinants of the CRH system has high power to predict the risk of comorbid AUD in endangered populations. This knowledge should be used for preventive strategies in patients with severe psychiatric disease to avert further individual health, social, or economic decline. Moreover, it could deliver a basis for novel individualized treatment approaches with, for example, CRH antagonists.

Correspondence: Hannelore Ehrenreich, MD, DVM, Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany (ehrenreich@em.mpg.de).

Submitted for Publication: March 21, 2011; final revision received March 28, 2011; accepted June 4, 2011.

Published Online: August 1, 2011. doi:10.1001/archgenpsychiatry.2011.100

Author Contributions: Mss Ribbe and Ackermann contributed equally to this work. Dr Ehrenreich and Mss Ribbe and Ackermann had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosure: None reported.

Funding/Support: This study was supported by the Max Planck Society and the DFG Research Center for Molecular Physiology of the Brain. We are indebted to all patients for their participation in the GRAS study and to all colleagues in the collaborating centers who contributed to the GRAS Data Collection.

Hasin DS, Stinson FS, Ogburn E, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions.  Arch Gen Psychiatry. 2007;64(7):830-842
PubMed   |  Link to Article
Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey.  Arch Gen Psychiatry. 1994;51(1):8-19
PubMed   |  Link to Article
Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK. Comorbidity of mental disorders with alcohol and other drug abuse: results from the Epidemiologic Catchment Area (ECA) Study.  JAMA. 1990;264(19):2511-2518
PubMed   |  Link to Article
Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, Gastfriend DR, Hosking JD, Johnson BA, LoCastro JS, Longabaugh R, Mason BJ, Mattson ME, Miller WR, Pettinati HM, Randall CL, Swift R, Weiss RD, Williams LD, Zweben A.COMBINE Study Research Group.  Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial.  JAMA. 2006;295(17):2003-2017
PubMed   |  Link to Article
Burtscheidt W, Wölwer W, Schwarz R, Strauss W, Gaebel W. Out-patient behaviour therapy in alcoholism: treatment outcome after 2 years.  Acta Psychiatr Scand. 2002;106(3):227-232
PubMed   |  Link to Article
Krampe H, Stawicki S, Wagner T, Bartels C, Aust C, Rüther E, Poser W, Ehrenreich H. Follow-up of 180 alcoholic patients for up to 7 years after outpatient treatment: impact of alcohol deterrents on outcome.  Alcohol Clin Exp Res. 2006;30(1):86-95
PubMed   |  Link to Article
Drake RE, Osher FC, Noordsy DL, Hurlbut SC, Teague GB, Beaudett MS. Diagnosis of alcohol use disorders in schizophrenia.  Schizophr Bull. 1990;16(1):57-67
PubMed
Hambrecht M, Häfner H. Substance abuse and the onset of schizophrenia.  Biol Psychiatry. 1996;40(11):1155-1163
PubMed   |  Link to Article
Koskinen J, Löhönen J, Koponen H, Isohanni M, Miettunen J. Prevalence of alcohol use disorders in schizophrenia: a systematic review and meta-analysis.  Acta Psychiatr Scand. 2009;120(2):85-96
PubMed   |  Link to Article
Mueser KT, Yarnold PR, Levinson DF, Singh H, Bellack AS, Kee K, Morrison RL, Yadalam KG. Prevalence of substance abuse in schizophrenia: demographic and clinical correlates.  Schizophr Bull. 1990;16(1):31-56
PubMed
Compton MT, Weiss PS, West JC, Kaslow NJ. The associations between substance use disorders, schizophrenia-spectrum disorders, and Axis IV psychosocial problems.  Soc Psychiatry Psychiatr Epidemiol. 2005;40(12):939-946
PubMed   |  Link to Article
Wilk J, West JC, Rae DS, Regier DA. Relationship of comorbid substance and alcohol use disorders to disability among patients in routine psychiatric practice.  Am J Addict. 2006;15(2):180-185
PubMed   |  Link to Article
Hunt GE, Bergen J, Bashir M. Medication compliance and comorbid substance abuse in schizophrenia: impact on community survival 4 years after a relapse.  Schizophr Res. 2002;54(3):253-264
PubMed   |  Link to Article
Abbey A, Smith MJ, Scott RO. The relationship between reasons for drinking alcohol and alcohol consumption: an interactional approach.  Addict Behav. 1993;18(6):659-670
PubMed   |  Link to Article
Carpenter KM, Hasin D. A prospective evaluation of the relationship between reasons for drinking and DSM-IV alcohol-use disorders.  Addict Behav. 1998;23(1):41-46
PubMed   |  Link to Article
Hasking PA, Oei TP. Alcohol expectancies, self-efficacy and coping in an alcohol-dependent sample.  Addict Behav. 2007;32(1):99-113
PubMed   |  Link to Article
Tyssen R, Vaglum P, Aasland OG, Grønvold NT, Ekeberg O. Use of alcohol to cope with tension, and its relation to gender, years in medical school and hazardous drinking: a study of two nation-wide Norwegian samples of medical students.  Addiction. 1998;93(9):1341-1349
PubMed   |  Link to Article
Veenstra MY, Lemmens PH, Friesema IH, Garretsen HF, Knottnerus JA, Zwietering PJ. A literature overview of the relationship between life-events and alcohol use in the general population.  Alcohol Alcohol. 2006;41(4):455-463
PubMed
Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.  Science. 1981;213(4514):1394-1397
PubMed   |  Link to Article
Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, Sawchenko PE, Vale W. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary.  Proc Natl Acad Sci U S A. 1994;91(19):8777-8781
PubMed   |  Link to Article
Behan DP, De Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides.  Front Neuroendocrinol. 1995;16(4):362-382
PubMed   |  Link to Article
Jahn O, Radulovic J, Stiedl O, Tezval H, Eckart K, Spiess J. Corticotropin-releasing factor binding protein: a ligand trap?  Mini Rev Med Chem. 2005;5(10):953-960
PubMed   |  Link to Article
Ehrenreich H, Schuck J, Stender N, Pilz J, Gefeller O, Schilling L, Poser W, Kaw S. Endocrine and hemodynamic effects of stress versus systemic CRF in alcoholics during early and medium term abstinence.  Alcohol Clin Exp Res. 1997;21(7):1285-1293
PubMed   |  Link to Article
Rivier C, Bruhn T, Vale W. Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF).  J Pharmacol Exp Ther. 1984;229(1):127-131
PubMed
Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors.  Science. 2002;296(5569):931-933
PubMed   |  Link to Article
Chu K, Koob GF, Cole M, Zorrilla EP, Roberts AJ. Dependence-induced increases in ethanol self-administration in mice are blocked by the CRF1 receptor antagonist antalarmin and by CRF1 receptor knockout.  Pharmacol Biochem Behav. 2007;86(4):813-821
PubMed   |  Link to Article
Barr CS, Dvoskin RL, Gupte M, Sommer W, Sun H, Schwandt ML, Lindell SG, Kasckow JW, Suomi SJ, Goldman D, Higley JD, Heilig M. Functional CRH variation increases stress-induced alcohol consumption in primates.  Proc Natl Acad Sci U S A. 2009;106(34):14593-14598
PubMed   |  Link to Article
Binder EB, Owens MJ, Liu W, Deveau TC, Rush AJ, Trivedi MH, Fava M, Bradley B, Ressler KJ, Nemeroff CB. Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response.  Arch Gen Psychiatry. 2010;67(4):369-379
PubMed   |  Link to Article
Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R, Lake S, Tantisira KG, Weiss ST, Wong ML. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans.  Mol Psychiatry. 2004;9(12):1075-1082
PubMed   |  Link to Article
Wasserman D, Sokolowski M, Rozanov V, Wasserman J. The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress.  Genes Brain Behav. 2008;7(1):14-19
PubMed
Keck ME, Kern N, Erhardt A, Unschuld PG, Ising M, Salyakina D, Müller MB, Knorr CC, Lieb R, Hohoff C, Krakowitzky P, Maier W, Bandelow B, Fritze J, Deckert J, Holsboer F, Müller-Myhsok B, Binder EB. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder.  Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1196-1204
PubMed   |  Link to Article
Enoch MA, Shen PH, Ducci F, Yuan Q, Liu J, White KV, Albaugh B, Hodgkinson CA, Goldman D. Common genetic origins for EEG, alcoholism and anxiety: the role of CRH-BP.  PLoS One. 2008;3(10):e3620
PubMed   |  Link to Article
Treutlein J, Kissling C, Frank J, Wiemann S, Dong L, Depner M, Saam C, Lascorz J, Soyka M, Preuss UW, Rujescu D, Skowronek MH, Rietschel M, Spanagel R, Heinz A, Laucht M, Mann K, Schumann G. Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples.  Mol Psychiatry. 2006;11(6):594-602
PubMed   |  Link to Article
Blomeyer D, Treutlein J, Esser G, Schmidt MH, Schumann G, Laucht M. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use.  Biol Psychiatry. 2008;63(2):146-151
PubMed   |  Link to Article
Chen AC, Manz N, Tang Y, Rangaswamy M, Almasy L, Kuperman S, Nurnberger J Jr, O’Connor SJ, Edenberg HJ, Schuckit MA, Tischfield J, Foroud T, Bierut LJ, Rohrbaugh J, Rice JP, Goate A, Hesselbrock V, Porjesz B. Single-nucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence.  Alcohol Clin Exp Res. 2010;34(6):988-996
PubMed   |  Link to Article
Nelson EC, Agrawal A, Pergadia ML, Wang JC, Whitfield JB, Saccone FS, Kern J, Grant JD, Schrage AJ, Rice JP, Montgomery GW, Heath AC, Goate AM, Martin NG, Madden PA. H2 haplotype at chromosome 17q21.31 protects against childhood sexual abuse-associated risk for alcohol consumption and dependence.  Addict Biol. 2010;15(1):1-11
PubMed   |  Link to Article
American Psychiatric Association.  Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994
Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, Friedrichs H, Radyushkin KA, El-Kordi A, Benseler F, Hannke K, Sperling S, Schwerdtfeger D, Thanhäuser I, Gerchen MF, Ghorbani M, Gutwinski S, Hilmes C, Leppert R, Ronnenberg A, Sowislo J, Stawicki S, Stödtke M, Szuszies C, Reim K, Riggert J, Eckstein F, Falkai P, Bickeböller H, Nave K-A, Brose N, Ehrenreich H. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms.  Arch Gen Psychiatry. 2010;67(9):879-888
PubMed   |  Link to Article
Ribbe K, Friedrichs H, Begemann M, Grube S, Papiol S, Kästner A, Gerchen MF, Ackermann V, Tarami A, Treitz A, Flögel M, Adler L, Aldenhoff JB, Becker-Emner M, Becker T, Czernik A, Dose M, Folkerts H, Freese R, Günther R, Herpertz S, Hesse D, Kruse G, Kunze H, Franz M, Löhrer F, Maier W, Mielke A, Müller-Isberner R, Oestereich C, Pajonk FG, Pollmächer T, Schneider U, Schwarz HJ, Kröner-Herwig B, Havemann-Reinecke U, Frahm J, Stühmer W, Falkai P, Brose N, Nave KA, Ehrenreich H. The cross-sectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients.  BMC Psychiatry. 2010;10:91
PubMed   |  Link to Article
Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM. Worldwide human relationships inferred from genome-wide patterns of variation.  Science. 2008;319(5866):1100-1104
PubMed   |  Link to Article
Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, Mowry BJ, Bulayeva K, Weiss RB, Jorde LB. Fine-scaled human genetic structure revealed by SNP microarrays.  Genome Res. 2009;19(5):815-825
PubMed   |  Link to Article
Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB. Genotype, haplotype and copy-number variation in worldwide human populations.  Nature. 2008;451(7181):998-1003
PubMed   |  Link to Article
Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P, Suk EK, Toliat MR, Klopp N, Caliebe A, König IR, Köhler K, Ludemann J, Diaz Lacava A, Fimmers R, Lichtner P, Ziegler A, Wolf A, Krawczak M, Nūrnberg P, Hampe J, Schreiber S, Meitinger T, Wichmann HE, Roeder K, Wienker TF, Baur MP. SNP-based analysis of genetic substructure in the German population.  Hum Hered. 2006;62(1):20-29
PubMed   |  Link to Article
Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.  Schizophr Bull. 1987;13(2):261-276
PubMed
Guy W. Clinical Global Impression (CGI). In: Guy W, ed. ECDEU Assessment Manual for Psychopharmacology, Revised. Rockville, MD: US Dept of Health, Education,& Welfare; 1976
Laux L, Glanzmann P, Schaffner P, Spielberger CD. Das State-Trait-Angstinventar (STAI). Weinheim, Germany: Beltz; 1981
Franke GH. Brief Symptom Inventory (BSI). Göttingen, Germany: Beltz; 2000
Emsley R, Rabinowitz J, Torreman M.RIS-INT-35 Early Psychosis Global Working Group.  The factor structure for the Positive and Negative Syndrome Scale (PANSS) in recent-onset psychosis.  Schizophr Res. 2003;61(1):47-57
PubMed   |  Link to Article
Krampe H, Wagner T, Stawicki S, Bartels C, Aust C, Kroener-Herwig B, Kuefner H, Ehrenreich H. Personality disorder and chronicity of addiction as independent outcome predictors in alcoholism treatment.  Psychiatr Serv. 2006;57(5):708-712
PubMed   |  Link to Article
National Center for Biotechnology Information.  NCBI Web site. http://www.ncbi.nlm.nih.gov/. Accessed November 6, 2011
International HapMap Project.  HapMap Web site. http://hapmap.ncbi.nlm.nih.gov/. Accessed November 6, 2011
University of California, Santa Cruz.  UCSC Genome Browser Web site. http://genome.ucsc.edu. Accessed November 6, 2011
Schmid B, Blomeyer D, Treutlein J, Zimmermann US, Buchmann AF, Schmidt MH, Esser G, Rietschel M, Banaschewski T, Schumann G, Laucht M. Interacting effects of CRHR1 gene and stressful life events on drinking initiation and progression among 19-year-olds.  Int J Neuropsychopharmacol. 2010;13(6):703-714
PubMed   |  Link to Article
Blom G. Statistical Estimates and Transformed Beta Variables. New York, NY: John Wiley& Sons; 1958
Cronbach LJ. Coefficient alpha and the internal structure of tests.  Psychometrika. 1951;16(3):297-334
Link to Article
Cortina JM. What is coefficient alpha? an examination of theory and applications.  J Appl Psychol. 1993;78(1):98-104
Link to Article
Batel P, Pessione F, Maître C, Rueff B. Relationship between alcohol and tobacco dependencies among alcoholics who smoke.  Addiction. 1995;90(7):977-980
PubMed   |  Link to Article
Burling TA, Ziff DC. Tobacco smoking: a comparison between alcohol and drug abuse inpatients.  Addict Behav. 1988;13(2):185-190
PubMed   |  Link to Article
Kudielka BM, Hellhammer DH, Wüst S. Why do we respond so differently? reviewing determinants of human salivary cortisol responses to challenge.  Psychoneuroendocrinology. 2009;34(1):2-18
PubMed   |  Link to Article
Schlaepfer IR, Hoft NR, Ehringer MA. The genetic components of alcohol and nicotine co-addiction: from genes to behavior.  Curr Drug Abuse Rev. 2008;1(2):124-134
PubMed   |  Link to Article
Heilig M, Koob GF. A key role for corticotropin-releasing factor in alcohol dependence.  Trends Neurosci. 2007;30(8):399-406
PubMed   |  Link to Article
Kozarić-Kovacić D, Folnegović-Smalc V, Folnegović Z, Maruĭć A. Influence of alcoholism on the prognosis of schizophrenic patients.  J Stud Alcohol. 1995;56(6):622-627
PubMed
Large M, Sharma S, Compton MT, Slade T, Nielssen O. Cannabis use and earlier onset of psychosis: a systematic meta-analysis.  Arch Gen Psychiatry. 2011;68(6):555-561
PubMed   |  Link to Article
Compton MT, Kelley ME, Ramsay CE, Pringle M, Goulding SM, Esterberg ML, Stewart T, Walker EF. Association of pre-onset cannabis, alcohol, and tobacco use with age at onset of prodrome and age at onset of psychosis in first-episode patients.  Am J Psychiatry. 2009;166(11):1251-1257
PubMed   |  Link to Article
Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes.  Nat Rev Genet. 2005;6(7):521-532
PubMed   |  Link to Article
Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, Maier W, Moessner R, Gaebel W, Dahmen N, Fehr C, Scherbaum N, Steffens M, Ludwig KU, Frank J, Wichmann HE, Schreiber S, Dragano N, Sommer WH, Leonardi-Essmann F, Lourdusamy A, Gebicke-Haerter P, Wienker TF, Sullivan PF, Nöthen MM, Kiefer F, Spanagel R, Mann K, Rietschel M. Genome-wide association study of alcohol dependence.  Arch Gen Psychiatry. 2009;66(7):773-784
PubMed   |  Link to Article
Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, Fisher S, Fox L, Howells W, Bertelsen S, Hinrichs AL, Almasy L, Breslau N, Culverhouse RC, Dick DM, Edenberg HJ, Foroud T, Grucza RA, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Krueger RF, Kuperman S, Lynskey M, Mann K, Neuman RJ, Nöthen MM, Nurnberger JI Jr, Porjesz B, Ridinger M, Saccone NL, Saccone SF, Schuckit MA, Tischfield JA, Wang JC, Rietschel M, Goate AM, Rice JP.Gene, Environment Association Studies Consortium.  A genome-wide association study of alcohol dependence.  Proc Natl Acad Sci U S A. 2010;107(11):5082-5087
PubMed   |  Link to Article
Edenberg HJ, Koller DL, Xuei X, Wetherill L, McClintick JN, Almasy L, Bierut LJ, Bucholz KK, Goate A, Aliev F, Dick D, Hesselbrock V, Hinrichs A, Kramer J, Kuperman S, Nurnberger JI Jr, Rice JP, Schuckit MA, Taylor R, Todd Webb B, Tischfield JA, Porjesz B, Foroud T. Genome-wide association study of alcohol dependence implicates a region on chromosome 11.  Alcohol Clin Exp Res. 2010;34(5):840-852
PubMed   |  Link to Article
Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, de Moor MH, Smit AB, Hottenga JJ, Richter MM, Heath AC, Martin NG, Willemsen G, de Geus EJ, Vogelzangs N, Penninx BW, Whitfield JB, Montgomery GW, Boomsma DI, Madden PA. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations.  Twin Res Hum Genet. 2010;13(1):10-29
PubMed   |  Link to Article
Zlojutro M, Manz N, Rangaswamy M, Xuei X, Flury-Wetherill L, Koller D, Bierut LJ, Goate A, Hesselbrock V, Kuperman S, Nurnberger J Jr, Rice JP, Schuckit MA, Foroud T, Edenberg HJ, Porjesz B, Almasy L. Genome-wide association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 influencing risk of alcohol dependence.  Am J Med Genet B Neuropsychiatr Genet. 2011;156B(1):44-58
PubMed
Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, Foroud T, Hesselbrock V, Schuckit MA, Bucholz K, Porjesz B, Li TK, Conneally PM, Nurnberger JI Jr, Tischfield JA, Crowe RR, Cloninger CR, Wu W, Shears S, Carr K, Crose C, Willig C, Begleiter H. Genome-wide search for genes affecting the risk for alcohol dependence.  Am J Med Genet. 1998;81(3):207-215
PubMed   |  Link to Article
Smith L, Watson M, Gates S, Ball D, Foxcroft D. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE gene-disease association review.  Am J Epidemiol. 2008;167(2):125-138
PubMed   |  Link to Article
Valdez GR. Development of CRF1 receptor antagonists as antidepressants and anxiolytics: progress to date.  CNS Drugs. 2006;20(11):887-896
PubMed   |  Link to Article
Ising M, Zimmermann US, Künzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response.  Neuropsychopharmacology. 2007;32(9):1941-1949
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Basics of genotyping and phenotyping strategies. A, Location of selected single-nucleotide polymorphisms on CRHR1 and CRHBP genes. Coding regions are shown in black; untranslated regions, gray. kb indicates kilobases. B, Variables composing the alcoholism severity score and their intercorrelations (statistics: Pearson correlation and Cronbachα coefficient). SCID indicates Structured Clinical Interview for DSM-IV Disorders. C, Distribution of alcoholism severity score and DSM-IV alcohol use disorder (AUD) diagnoses for either alcohol abuse or alcohol dependence in the Göttingen Research Association for Schizophrenia sample of schizophrenic patients (n = 957; statistics: point-biserial correlation).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Phenotype-based genetic association study. A, Distribution of alcoholism severity scores in CRHR1 SNP1 genotypes and CRHBP SNP1 genotypes using analysis of covariance adjusted for age. GRAS indicates Göttingen Research Association for Schizophrenia. Data are presented as mean (SEM). B, Interaction effect between CRHR1 SNP1 and CRHBP SNP1 genotypes with respect to alcoholism severity score in the GRAS sample using analysis of covariance adjusted for age. Data are presented as mean (SEM). C, Interaction effect between CRHR1 SNP1 and CRHBP SNP1 genotypes with respect to the diagnosis of alcohol use disorder (AUD) according to DSM-IV using logistic regression analyses with age as confounder for estimating odds ratios (ORs) and 95% confidence intervals (CIs). D, Interaction effect between CRHR1 SNP1 and CRHBP SNP1 genotypes with respect to alcoholism severity score in psychiatric disease controls using analysis of covariance adjusted for age. Data are presented as mean (SEM). E, Ratio of CRHR1 and CRHBP messenger RNA (mRNA) expression in peripheral blood mononuclear cells (PBMCs) dependent on genotypes (risk genotype against all others) in a total of 104 patients as well as on separation of these patients according to the diagnosis of AUD (n = 34) and non-AUD (n = 70) using Mann-Whitney U tests. Raw data of mRNA levels (normalized toβ-actin) dependent on genotype combinations are presented in the table below.

Tables

Table Graphic Jump LocationTable 1. Göttingen Research Association for Schizophrenia Sample Description
Table Graphic Jump LocationTable 2. Association of Selected Single-Nucleotide Polymorphisms of CRHR1 and CRHBP With Alcoholism Target Variables and Control Variables in the Göttingen Research Association for Schizophrenia Samplea

References

Hasin DS, Stinson FS, Ogburn E, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions.  Arch Gen Psychiatry. 2007;64(7):830-842
PubMed   |  Link to Article
Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey.  Arch Gen Psychiatry. 1994;51(1):8-19
PubMed   |  Link to Article
Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK. Comorbidity of mental disorders with alcohol and other drug abuse: results from the Epidemiologic Catchment Area (ECA) Study.  JAMA. 1990;264(19):2511-2518
PubMed   |  Link to Article
Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, Gastfriend DR, Hosking JD, Johnson BA, LoCastro JS, Longabaugh R, Mason BJ, Mattson ME, Miller WR, Pettinati HM, Randall CL, Swift R, Weiss RD, Williams LD, Zweben A.COMBINE Study Research Group.  Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial.  JAMA. 2006;295(17):2003-2017
PubMed   |  Link to Article
Burtscheidt W, Wölwer W, Schwarz R, Strauss W, Gaebel W. Out-patient behaviour therapy in alcoholism: treatment outcome after 2 years.  Acta Psychiatr Scand. 2002;106(3):227-232
PubMed   |  Link to Article
Krampe H, Stawicki S, Wagner T, Bartels C, Aust C, Rüther E, Poser W, Ehrenreich H. Follow-up of 180 alcoholic patients for up to 7 years after outpatient treatment: impact of alcohol deterrents on outcome.  Alcohol Clin Exp Res. 2006;30(1):86-95
PubMed   |  Link to Article
Drake RE, Osher FC, Noordsy DL, Hurlbut SC, Teague GB, Beaudett MS. Diagnosis of alcohol use disorders in schizophrenia.  Schizophr Bull. 1990;16(1):57-67
PubMed
Hambrecht M, Häfner H. Substance abuse and the onset of schizophrenia.  Biol Psychiatry. 1996;40(11):1155-1163
PubMed   |  Link to Article
Koskinen J, Löhönen J, Koponen H, Isohanni M, Miettunen J. Prevalence of alcohol use disorders in schizophrenia: a systematic review and meta-analysis.  Acta Psychiatr Scand. 2009;120(2):85-96
PubMed   |  Link to Article
Mueser KT, Yarnold PR, Levinson DF, Singh H, Bellack AS, Kee K, Morrison RL, Yadalam KG. Prevalence of substance abuse in schizophrenia: demographic and clinical correlates.  Schizophr Bull. 1990;16(1):31-56
PubMed
Compton MT, Weiss PS, West JC, Kaslow NJ. The associations between substance use disorders, schizophrenia-spectrum disorders, and Axis IV psychosocial problems.  Soc Psychiatry Psychiatr Epidemiol. 2005;40(12):939-946
PubMed   |  Link to Article
Wilk J, West JC, Rae DS, Regier DA. Relationship of comorbid substance and alcohol use disorders to disability among patients in routine psychiatric practice.  Am J Addict. 2006;15(2):180-185
PubMed   |  Link to Article
Hunt GE, Bergen J, Bashir M. Medication compliance and comorbid substance abuse in schizophrenia: impact on community survival 4 years after a relapse.  Schizophr Res. 2002;54(3):253-264
PubMed   |  Link to Article
Abbey A, Smith MJ, Scott RO. The relationship between reasons for drinking alcohol and alcohol consumption: an interactional approach.  Addict Behav. 1993;18(6):659-670
PubMed   |  Link to Article
Carpenter KM, Hasin D. A prospective evaluation of the relationship between reasons for drinking and DSM-IV alcohol-use disorders.  Addict Behav. 1998;23(1):41-46
PubMed   |  Link to Article
Hasking PA, Oei TP. Alcohol expectancies, self-efficacy and coping in an alcohol-dependent sample.  Addict Behav. 2007;32(1):99-113
PubMed   |  Link to Article
Tyssen R, Vaglum P, Aasland OG, Grønvold NT, Ekeberg O. Use of alcohol to cope with tension, and its relation to gender, years in medical school and hazardous drinking: a study of two nation-wide Norwegian samples of medical students.  Addiction. 1998;93(9):1341-1349
PubMed   |  Link to Article
Veenstra MY, Lemmens PH, Friesema IH, Garretsen HF, Knottnerus JA, Zwietering PJ. A literature overview of the relationship between life-events and alcohol use in the general population.  Alcohol Alcohol. 2006;41(4):455-463
PubMed
Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin.  Science. 1981;213(4514):1394-1397
PubMed   |  Link to Article
Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, Sawchenko PE, Vale W. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary.  Proc Natl Acad Sci U S A. 1994;91(19):8777-8781
PubMed   |  Link to Article
Behan DP, De Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW. Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides.  Front Neuroendocrinol. 1995;16(4):362-382
PubMed   |  Link to Article
Jahn O, Radulovic J, Stiedl O, Tezval H, Eckart K, Spiess J. Corticotropin-releasing factor binding protein: a ligand trap?  Mini Rev Med Chem. 2005;5(10):953-960
PubMed   |  Link to Article
Ehrenreich H, Schuck J, Stender N, Pilz J, Gefeller O, Schilling L, Poser W, Kaw S. Endocrine and hemodynamic effects of stress versus systemic CRF in alcoholics during early and medium term abstinence.  Alcohol Clin Exp Res. 1997;21(7):1285-1293
PubMed   |  Link to Article
Rivier C, Bruhn T, Vale W. Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF).  J Pharmacol Exp Ther. 1984;229(1):127-131
PubMed
Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors.  Science. 2002;296(5569):931-933
PubMed   |  Link to Article
Chu K, Koob GF, Cole M, Zorrilla EP, Roberts AJ. Dependence-induced increases in ethanol self-administration in mice are blocked by the CRF1 receptor antagonist antalarmin and by CRF1 receptor knockout.  Pharmacol Biochem Behav. 2007;86(4):813-821
PubMed   |  Link to Article
Barr CS, Dvoskin RL, Gupte M, Sommer W, Sun H, Schwandt ML, Lindell SG, Kasckow JW, Suomi SJ, Goldman D, Higley JD, Heilig M. Functional CRH variation increases stress-induced alcohol consumption in primates.  Proc Natl Acad Sci U S A. 2009;106(34):14593-14598
PubMed   |  Link to Article
Binder EB, Owens MJ, Liu W, Deveau TC, Rush AJ, Trivedi MH, Fava M, Bradley B, Ressler KJ, Nemeroff CB. Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response.  Arch Gen Psychiatry. 2010;67(4):369-379
PubMed   |  Link to Article
Licinio J, O’Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R, Lake S, Tantisira KG, Weiss ST, Wong ML. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans.  Mol Psychiatry. 2004;9(12):1075-1082
PubMed   |  Link to Article
Wasserman D, Sokolowski M, Rozanov V, Wasserman J. The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress.  Genes Brain Behav. 2008;7(1):14-19
PubMed
Keck ME, Kern N, Erhardt A, Unschuld PG, Ising M, Salyakina D, Müller MB, Knorr CC, Lieb R, Hohoff C, Krakowitzky P, Maier W, Bandelow B, Fritze J, Deckert J, Holsboer F, Müller-Myhsok B, Binder EB. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder.  Am J Med Genet B Neuropsychiatr Genet. 2008;147B(7):1196-1204
PubMed   |  Link to Article
Enoch MA, Shen PH, Ducci F, Yuan Q, Liu J, White KV, Albaugh B, Hodgkinson CA, Goldman D. Common genetic origins for EEG, alcoholism and anxiety: the role of CRH-BP.  PLoS One. 2008;3(10):e3620
PubMed   |  Link to Article
Treutlein J, Kissling C, Frank J, Wiemann S, Dong L, Depner M, Saam C, Lascorz J, Soyka M, Preuss UW, Rujescu D, Skowronek MH, Rietschel M, Spanagel R, Heinz A, Laucht M, Mann K, Schumann G. Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples.  Mol Psychiatry. 2006;11(6):594-602
PubMed   |  Link to Article
Blomeyer D, Treutlein J, Esser G, Schmidt MH, Schumann G, Laucht M. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use.  Biol Psychiatry. 2008;63(2):146-151
PubMed   |  Link to Article
Chen AC, Manz N, Tang Y, Rangaswamy M, Almasy L, Kuperman S, Nurnberger J Jr, O’Connor SJ, Edenberg HJ, Schuckit MA, Tischfield J, Foroud T, Bierut LJ, Rohrbaugh J, Rice JP, Goate A, Hesselbrock V, Porjesz B. Single-nucleotide polymorphisms in corticotropin releasing hormone receptor 1 gene (CRHR1) are associated with quantitative trait of event-related potential and alcohol dependence.  Alcohol Clin Exp Res. 2010;34(6):988-996
PubMed   |  Link to Article
Nelson EC, Agrawal A, Pergadia ML, Wang JC, Whitfield JB, Saccone FS, Kern J, Grant JD, Schrage AJ, Rice JP, Montgomery GW, Heath AC, Goate AM, Martin NG, Madden PA. H2 haplotype at chromosome 17q21.31 protects against childhood sexual abuse-associated risk for alcohol consumption and dependence.  Addict Biol. 2010;15(1):1-11
PubMed   |  Link to Article
American Psychiatric Association.  Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994
Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, Friedrichs H, Radyushkin KA, El-Kordi A, Benseler F, Hannke K, Sperling S, Schwerdtfeger D, Thanhäuser I, Gerchen MF, Ghorbani M, Gutwinski S, Hilmes C, Leppert R, Ronnenberg A, Sowislo J, Stawicki S, Stödtke M, Szuszies C, Reim K, Riggert J, Eckstein F, Falkai P, Bickeböller H, Nave K-A, Brose N, Ehrenreich H. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms.  Arch Gen Psychiatry. 2010;67(9):879-888
PubMed   |  Link to Article
Ribbe K, Friedrichs H, Begemann M, Grube S, Papiol S, Kästner A, Gerchen MF, Ackermann V, Tarami A, Treitz A, Flögel M, Adler L, Aldenhoff JB, Becker-Emner M, Becker T, Czernik A, Dose M, Folkerts H, Freese R, Günther R, Herpertz S, Hesse D, Kruse G, Kunze H, Franz M, Löhrer F, Maier W, Mielke A, Müller-Isberner R, Oestereich C, Pajonk FG, Pollmächer T, Schneider U, Schwarz HJ, Kröner-Herwig B, Havemann-Reinecke U, Frahm J, Stühmer W, Falkai P, Brose N, Nave KA, Ehrenreich H. The cross-sectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients.  BMC Psychiatry. 2010;10:91
PubMed   |  Link to Article
Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM. Worldwide human relationships inferred from genome-wide patterns of variation.  Science. 2008;319(5866):1100-1104
PubMed   |  Link to Article
Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, Mowry BJ, Bulayeva K, Weiss RB, Jorde LB. Fine-scaled human genetic structure revealed by SNP microarrays.  Genome Res. 2009;19(5):815-825
PubMed   |  Link to Article
Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB. Genotype, haplotype and copy-number variation in worldwide human populations.  Nature. 2008;451(7181):998-1003
PubMed   |  Link to Article
Steffens M, Lamina C, Illig T, Bettecken T, Vogler R, Entz P, Suk EK, Toliat MR, Klopp N, Caliebe A, König IR, Köhler K, Ludemann J, Diaz Lacava A, Fimmers R, Lichtner P, Ziegler A, Wolf A, Krawczak M, Nūrnberg P, Hampe J, Schreiber S, Meitinger T, Wichmann HE, Roeder K, Wienker TF, Baur MP. SNP-based analysis of genetic substructure in the German population.  Hum Hered. 2006;62(1):20-29
PubMed   |  Link to Article
Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.  Schizophr Bull. 1987;13(2):261-276
PubMed
Guy W. Clinical Global Impression (CGI). In: Guy W, ed. ECDEU Assessment Manual for Psychopharmacology, Revised. Rockville, MD: US Dept of Health, Education,& Welfare; 1976
Laux L, Glanzmann P, Schaffner P, Spielberger CD. Das State-Trait-Angstinventar (STAI). Weinheim, Germany: Beltz; 1981
Franke GH. Brief Symptom Inventory (BSI). Göttingen, Germany: Beltz; 2000
Emsley R, Rabinowitz J, Torreman M.RIS-INT-35 Early Psychosis Global Working Group.  The factor structure for the Positive and Negative Syndrome Scale (PANSS) in recent-onset psychosis.  Schizophr Res. 2003;61(1):47-57
PubMed   |  Link to Article
Krampe H, Wagner T, Stawicki S, Bartels C, Aust C, Kroener-Herwig B, Kuefner H, Ehrenreich H. Personality disorder and chronicity of addiction as independent outcome predictors in alcoholism treatment.  Psychiatr Serv. 2006;57(5):708-712
PubMed   |  Link to Article
National Center for Biotechnology Information.  NCBI Web site. http://www.ncbi.nlm.nih.gov/. Accessed November 6, 2011
International HapMap Project.  HapMap Web site. http://hapmap.ncbi.nlm.nih.gov/. Accessed November 6, 2011
University of California, Santa Cruz.  UCSC Genome Browser Web site. http://genome.ucsc.edu. Accessed November 6, 2011
Schmid B, Blomeyer D, Treutlein J, Zimmermann US, Buchmann AF, Schmidt MH, Esser G, Rietschel M, Banaschewski T, Schumann G, Laucht M. Interacting effects of CRHR1 gene and stressful life events on drinking initiation and progression among 19-year-olds.  Int J Neuropsychopharmacol. 2010;13(6):703-714
PubMed   |  Link to Article
Blom G. Statistical Estimates and Transformed Beta Variables. New York, NY: John Wiley& Sons; 1958
Cronbach LJ. Coefficient alpha and the internal structure of tests.  Psychometrika. 1951;16(3):297-334
Link to Article
Cortina JM. What is coefficient alpha? an examination of theory and applications.  J Appl Psychol. 1993;78(1):98-104
Link to Article
Batel P, Pessione F, Maître C, Rueff B. Relationship between alcohol and tobacco dependencies among alcoholics who smoke.  Addiction. 1995;90(7):977-980
PubMed   |  Link to Article
Burling TA, Ziff DC. Tobacco smoking: a comparison between alcohol and drug abuse inpatients.  Addict Behav. 1988;13(2):185-190
PubMed   |  Link to Article
Kudielka BM, Hellhammer DH, Wüst S. Why do we respond so differently? reviewing determinants of human salivary cortisol responses to challenge.  Psychoneuroendocrinology. 2009;34(1):2-18
PubMed   |  Link to Article
Schlaepfer IR, Hoft NR, Ehringer MA. The genetic components of alcohol and nicotine co-addiction: from genes to behavior.  Curr Drug Abuse Rev. 2008;1(2):124-134
PubMed   |  Link to Article
Heilig M, Koob GF. A key role for corticotropin-releasing factor in alcohol dependence.  Trends Neurosci. 2007;30(8):399-406
PubMed   |  Link to Article
Kozarić-Kovacić D, Folnegović-Smalc V, Folnegović Z, Maruĭć A. Influence of alcoholism on the prognosis of schizophrenic patients.  J Stud Alcohol. 1995;56(6):622-627
PubMed
Large M, Sharma S, Compton MT, Slade T, Nielssen O. Cannabis use and earlier onset of psychosis: a systematic meta-analysis.  Arch Gen Psychiatry. 2011;68(6):555-561
PubMed   |  Link to Article
Compton MT, Kelley ME, Ramsay CE, Pringle M, Goulding SM, Esterberg ML, Stewart T, Walker EF. Association of pre-onset cannabis, alcohol, and tobacco use with age at onset of prodrome and age at onset of psychosis in first-episode patients.  Am J Psychiatry. 2009;166(11):1251-1257
PubMed   |  Link to Article
Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes.  Nat Rev Genet. 2005;6(7):521-532
PubMed   |  Link to Article
Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, Maier W, Moessner R, Gaebel W, Dahmen N, Fehr C, Scherbaum N, Steffens M, Ludwig KU, Frank J, Wichmann HE, Schreiber S, Dragano N, Sommer WH, Leonardi-Essmann F, Lourdusamy A, Gebicke-Haerter P, Wienker TF, Sullivan PF, Nöthen MM, Kiefer F, Spanagel R, Mann K, Rietschel M. Genome-wide association study of alcohol dependence.  Arch Gen Psychiatry. 2009;66(7):773-784
PubMed   |  Link to Article
Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, Fisher S, Fox L, Howells W, Bertelsen S, Hinrichs AL, Almasy L, Breslau N, Culverhouse RC, Dick DM, Edenberg HJ, Foroud T, Grucza RA, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Krueger RF, Kuperman S, Lynskey M, Mann K, Neuman RJ, Nöthen MM, Nurnberger JI Jr, Porjesz B, Ridinger M, Saccone NL, Saccone SF, Schuckit MA, Tischfield JA, Wang JC, Rietschel M, Goate AM, Rice JP.Gene, Environment Association Studies Consortium.  A genome-wide association study of alcohol dependence.  Proc Natl Acad Sci U S A. 2010;107(11):5082-5087
PubMed   |  Link to Article
Edenberg HJ, Koller DL, Xuei X, Wetherill L, McClintick JN, Almasy L, Bierut LJ, Bucholz KK, Goate A, Aliev F, Dick D, Hesselbrock V, Hinrichs A, Kramer J, Kuperman S, Nurnberger JI Jr, Rice JP, Schuckit MA, Taylor R, Todd Webb B, Tischfield JA, Porjesz B, Foroud T. Genome-wide association study of alcohol dependence implicates a region on chromosome 11.  Alcohol Clin Exp Res. 2010;34(5):840-852
PubMed   |  Link to Article
Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, de Moor MH, Smit AB, Hottenga JJ, Richter MM, Heath AC, Martin NG, Willemsen G, de Geus EJ, Vogelzangs N, Penninx BW, Whitfield JB, Montgomery GW, Boomsma DI, Madden PA. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations.  Twin Res Hum Genet. 2010;13(1):10-29
PubMed   |  Link to Article
Zlojutro M, Manz N, Rangaswamy M, Xuei X, Flury-Wetherill L, Koller D, Bierut LJ, Goate A, Hesselbrock V, Kuperman S, Nurnberger J Jr, Rice JP, Schuckit MA, Foroud T, Edenberg HJ, Porjesz B, Almasy L. Genome-wide association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 influencing risk of alcohol dependence.  Am J Med Genet B Neuropsychiatr Genet. 2011;156B(1):44-58
PubMed
Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, Foroud T, Hesselbrock V, Schuckit MA, Bucholz K, Porjesz B, Li TK, Conneally PM, Nurnberger JI Jr, Tischfield JA, Crowe RR, Cloninger CR, Wu W, Shears S, Carr K, Crose C, Willig C, Begleiter H. Genome-wide search for genes affecting the risk for alcohol dependence.  Am J Med Genet. 1998;81(3):207-215
PubMed   |  Link to Article
Smith L, Watson M, Gates S, Ball D, Foxcroft D. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE gene-disease association review.  Am J Epidemiol. 2008;167(2):125-138
PubMed   |  Link to Article
Valdez GR. Development of CRF1 receptor antagonists as antidepressants and anxiolytics: progress to date.  CNS Drugs. 2006;20(11):887-896
PubMed   |  Link to Article
Ising M, Zimmermann US, Künzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE. High-affinity CRF1 receptor antagonist NBI-34041: preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response.  Neuropsychopharmacology. 2007;32(9):1941-1949
PubMed   |  Link to Article

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Data Supplements
Supplemental Content

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 5

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com

Users' Guides to the Medical Literature
Alcohol Abuse or Dependence

The Rational Clinical Examination
Make the Diagnosis: Alcohol Abuse