0
Original Article |

Neuroimaging Evidence for the Deficit Subtype of Schizophrenia

Aristotle N. Voineskos, MD, PhD, FRCPC; George Foussias, MD, MSc, FRCPC; Jason Lerch, PhD; Daniel Felsky, BSc; Gary Remington, MD, PhD, FRCPC; Tarek K. Rajji, MD, FRCPC; Nancy Lobaugh, PhD; Bruce G. Pollock, MD, PhD, FRCPC; Benoit H. Mulsant, MD, MS, FRCPC
JAMA Psychiatry. 2013;70(5):472-480. doi:10.1001/jamapsychiatry.2013.786.
Text Size: A A A
Published online

Importance A major obstacle to the identification of the neurobiological correlates of schizophrenia is the substantial clinical heterogeneity present in this disorder. Dividing schizophrenia into “deficit” and “nondeficit” subtypes may reduce heterogeneity and facilitate identification of neurobiological markers of disease.

Objective To determine whether patients with deficit schizophrenia differ from patients with nondeficit schizophrenia and healthy controls in neuroimaging-based measures of white matter tracts and gray matter morphology.

Design A cross-sectional neuroimaging study of patients with the deficit or nondeficit subtype of schizophrenia and healthy controls.

Setting University hospital.

Participants Seventy-seven patients with schizophrenia and 79 healthy controls.

Interventions All participants were administered the Structured Clinical Interview for DSM-IV-TR Axis I Disorders and the Positive and Negative Syndrome Scale; IQ was measured using the Wechsler Test for Adult Reading; global cognitive impairment was grossly assessed using the Mini-Mental State Examination; comorbid physical illness burden was measured by administration of the Clinical Information Rating Scale–Geriatrics; high-resolution magnetic resonance imaging was performed as part of a multimodal imaging protocol; and deficit status was determined using the proxy scale for the deficit syndrome.

Main Outcome Measures Diffusion-based measures of white matter tracts, cortical thickness, cortical surface area, and volumes of subcortical structures.

Results In both an individually matched approach (18 patients with deficit schizophrenia, 18 patients with nondeficit schizophrenia, and 18 healthy controls) and an unmatched population-based approach (18 patients with deficit schizophrenia, 59 patients with nondeficit schizophrenia, and 79 health controls), the patients with deficit schizophrenia demonstrated disruption of white matter tracts compared with patients with nondeficit schizophrenia and healthy controls at the right inferior longitudinal fasciculus, the right arcuate fasciculus, and the left uncinate fasciculus. These findings were supported in patients with first-episode schizophrenia (n = 20) who had a deficit score that was strongly correlated with disruption at these same tracts. In contrast, patients with schizophrenia of either subtype exhibited cortical thickness reductions compared with healthy controls, in near-identical neuroanatomic patterns. Surface areas and subcortical volumes did not differ significantly among the 3 groups.

Conclusions and Relevance The convergence of findings in our individually matched sample, our unmatched overall sample, and our first-episode schizophrenia sample demonstrate (1) white matter tract disruption as a neurobiological feature of the deficit syndrome and (2) reductions in cortical thickness as a common feature of patients with a diagnosis of schizophrenia. When taken with previous results in gray matter, our findings in white matter tracts point to neural circuitry important for socioemotional function as a core neurobiological feature of the deficit subtype of schizophrenia.

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Comparison of mean diffusivity for patients with deficit syndrome (DS), patients with nondeficit syndrome (NDS), and healthy controls (HC) in white matter tracts using box and whisker plots. The box boundaries represent first and third quartiles, and the midline is the median. Dots represent values more than 1.5 box lengths from the upper or lower edges, and a reanalysis without these data points did not change the significant results. The patients with DS demonstrated increased mean diffusivity (from left to right) at the right inferior longitudinal fasciculus (ILF), the left uncinate fasciculus (UF), and the right arcuate fasciculus (AF) in both the individually matched sample and the overall sample. Data presented here are from the individually matched sample.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Comparison of cortical thickness for patients with deficit syndrome (DS), patients with nondeficit syndrome (NDS), and healthy controls (HC) using box and whisker plots. The box boundaries represent first and third quartiles, and the midline is the median. Dots represent values more than 1.5 box lengths from the upper or lower edges, and a reanalysis without these data points did not change the significant results. The patients with DS or NDS demonstrated reductions in cortical thickness compared with HC at several regions in both the individually matched and overall samples. These reductions are demonstrated in the individually matched sample (from left to right) at the temporal pole, the middle temporal gyrus, and the orbitofrontal cortex.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 3. Correlation of the proxy for the deficit syndrome (PDS) score with the mean diffusivity of the right inferior longitudinal fasciculus (ILF) in 20 first-episode patients with schizophrenia.

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 5

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
PubMed Articles
Jobs
brightcove.createExperiences();