0
Original Investigation |

Neural Correlates of Recall of Life Events in Conversion Disorder

Selma Aybek, MD1; Timothy R. Nicholson, MD, PhD1; Fernando Zelaya, PhD2; Owen G. O’Daly, PhD2; Tom J. Craig, MD, PhD3; Anthony S. David, MD1; Richard A. Kanaan, MD, PhD4
[+] Author Affiliations
1Section of Cognitive Neuropsychiatry, Institute of Psychiatry, King’s College London, London, England
2Department of Neuroimaging, Institute of Psychiatry, King’s College London, London, England
3Department of Health Services and Population Research, Institute of Psychiatry, King’s College London, London, England
4Department of Psychiatry, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
JAMA Psychiatry. 2014;71(1):52-60. doi:10.1001/jamapsychiatry.2013.2842.
Text Size: A A A
Published online

Importance  Freud argued that in conversion disorder (CD) the affect attached to stressful memories is “repressed” and “converted” into physical symptoms, although this has never been subject to scientific study to our knowledge.

Objective  To examine the neural correlates of recall of life events judged to be of causal significance in CD.

Design, Setting, and Participants  Case-control study. Academic research setting among 12 patients with motor CD and 13 healthy control subjects.

Main Outcomes and Measures  Stressful life events were assessed using the Life Events and Difficulties Schedule and rated by a blinded panel for their likelihood to cause CD based on the threat posed and the extent to which subsequent illness might allow escape from some of their consequences (termed escape). Recall of those events (escape condition) was compared with recall of equally threatening control events from the same epoch (severe condition) in a functional magnetic resonance imaging task.

Results  Relative to controls, patients showed significantly increased left dorsolateral prefrontal cortex and decreased left hippocampus activity during the escape vs severe condition, accompanied by increased right supplementary motor area and temporoparietal junction activity. Relative to controls, patients failed to activate the right inferior frontal cortex during both conditions, and connectivity between amygdala and motor areas (supplementary motor area and cerebellum) was enhanced.

Conclusions and Relevance  These data offer support for the notion that the way adverse events are processed cognitively can be associated with physical symptoms in CD. Abnormal emotion (dorsolateral prefrontal cortex and right inferior frontal cortex) and memory control (hippocampus) are associated with alterations in symptom-related motor planning and body schema (supplementary motor area and temporoparietal junction).

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours

Figures

Place holder to copy figure label and caption
Figure 1.
Whole-Brain Analysis

Statistical parametric maps showing significant clusters of activation (P < .05, familywise error and cluster corrected). Red indicates group × condition interaction in the contrast escape > severe in patients > controls showing peak activations in the right supplementary motor area (SMA) and the right temporoparietal junction (TPJ). Blue indicates group × condition interaction in the contrast escape < severe in patients > controls showing decreased activation in the left hippocampus and parahippocampal gyrus. On the right are contrast estimates (y-axis) at right SMA (Montreal Neurological Institute [MNI] 12, −8, 68), right TPJ (MNI 40, −58, 24), and left hippocampus (MNI −28, −42, 2) (as indicated in the circles on the left). CD indicates patients with conversion disorder; Ctrl, healthy controls; Esc, escape condition; and Sev, severe condition.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Region of A Priori Interest Analysis

Statistical parametric maps showing significant clusters of activation (P < .05, familywise error and small-volume corrected). Blue indicates left dorsolateral prefrontal cortex (DLPFC) activation. Purple indicates right inferior frontal cortex (rIFC) activation. A, Contrast estimates in left DLPFC (Montreal Neurological Institute [MNI] −34, 36, 30; z = 2.75; P = .04, familywise error corrected). B, Contrast estimates in rIFC (MNI 44, 28, 8; z = 3.73; P = .004, familywise error corrected). C, Contrast estimates in left DLPFC (MNI −32, 36, 30; z = 2.77; P = .03, familywise error corrected).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Connectivity Analysis: Whole-Brain Psychophysiological Interaction Analysis

Statistical parametric maps of activation showing significant clusters (P < .05, cluster corrected; κ > 1900) for the main effect of group (patients > controls) across both escape and severe conditions. On the right are contrast estimates at the left amygdala (Montreal Neurological Institute [MNI] −28, 4, −30) and right cerebellum (MNI 22, −30, −28) (as indicated in the circles on the left). CD indicates patients with conversion disorder; Ctrl, healthy controls; Esc, escape condition; and Sev, severe condition.

Graphic Jump Location

Tables

References

Correspondence

CME


You need to register in order to view this quiz.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
PubMed Articles
Jobs
brightcove.createExperiences();