0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Parsing Dimensional vs Diagnostic Category–Related Patterns of Reward Circuitry Function in Behaviorally and Emotionally Dysregulated Youth in the Longitudinal Assessment of Manic Symptoms Study FREE

Genna Bebko, PhD1; Michele A. Bertocci, PhD1; Jay C. Fournier, PhD1; Amanda K. Hinze, MS1; Lisa Bonar, BS1; Jorge R. C. Almeida, MD, PhD1; Susan B. Perlman, PhD1; Amelia Versace, MD1; Claudiu Schirda, PhD1; Michael Travis, MD1; Mary Kay Gill, RN, MSN1; Christine Demeter, MA2; Vaibhav A. Diwadkar, PhD3; Gary Ciuffetelli, BA1; Eric Rodriguez, BS1; Thomas Olino, PhD1; Erika Forbes, PhD1; Jeffrey L. Sunshine, MD, PhD2; Scott K. Holland, PhD4; Robert A. Kowatch, MD, PhD5; Boris Birmaher, MD1; David Axelson, MD1; Sarah M. Horwitz, PhD6; L. Eugene Arnold, MD, MEd7; Mary A. Fristad, PhD, ABPP7; Eric A. Youngstrom, PhD8; Robert L. Findling, MD, MBA2,9; Mary L. Phillips, MD, MD (Cantab)1,10
[+] Author Affiliations
1Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
2Division of Child and Adolescent Psychiatry, University Hospitals Case Medical Center/Case Western Reserve University, Cleveland, Ohio
3Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, Michigan
4Division of Pediatric Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
5Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
6Department of Child Psychiatry, School of Medicine, New York University, New York
7Department of Psychiatry, The Ohio State University, Columbus
8Department of Psychology, University of North Carolina, Chapel Hill
9Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland
10Department of Psychological Medicine, Cardiff University, Cardiff, United Kingdom
JAMA Psychiatry. 2014;71(1):71-80. doi:10.1001/jamapsychiatry.2013.2870.
Text Size: A A A
Published online

Importance  Pediatric disorders characterized by behavioral and emotional dysregulation pose diagnostic and treatment challenges because of high comorbidity, suggesting that they may be better conceptualized dimensionally rather than categorically. Identifying neuroimaging measures associated with behavioral and emotional dysregulation in youth may inform understanding of underlying dimensional vs disorder-specific pathophysiologic features.

Objective  To identify, in a large cohort of behaviorally and emotionally dysregulated youth, neuroimaging measures that (1) are associated with behavioral and emotional dysregulation pathologic dimensions (behavioral and emotional dysregulation measured with the Parent General Behavior Inventory 10-Item Mania Scale [PGBI-10M], mania, depression, and anxiety) or (2) differentiate diagnostic categories (bipolar spectrum disorders, attention-deficit/hyperactivity disorder, anxiety, and disruptive behavior disorders).

Design, Setting, and Participants  A multisite neuroimaging study was conducted from February 1, 2011, to April 15, 2012, at 3 academic medical centers: University Hospitals Case Medical Center, Cincinnati Children’s Hospital Medical Center, and University of Pittsburgh Medical Center. Participants included a referred sample of behaviorally and emotionally dysregulated youth from the Longitudinal Assessment of Manic Symptoms (LAMS) study (n = 85) and healthy youth (n = 20).

Main Outcomes and Measures  Region-of-interest analyses examined relationships among prefrontal-ventral striatal reward circuitry during a reward paradigm (win, loss, and control conditions), symptom dimensions, and diagnostic categories.

Results  Regardless of diagnosis, higher PGBI-10M scores were associated with greater left middle prefrontal cortical activity (r = 0.28) and anxiety with greater right dorsal anterior cingulate cortical (r = 0.27) activity to win. The 20 highest (t = 2.75) and 20 lowest (t = 2.42) PGBI-10M–scoring youth showed significantly greater left middle prefrontal cortical activity to win compared with 20 healthy youth. Disruptive behavior disorders were associated with lower left ventrolateral prefrontal cortex activity to win (t = 2.68) (all P < .05, corrected).

Conclusions and Relevance  Greater PGBI-10M–related left middle prefrontal cortical activity and anxiety-related right dorsal anterior cingulate cortical activity to win may reflect heightened reward sensitivity and greater attention to reward in behaviorally and emotionally dysregulated youth regardless of diagnosis. Reduced left ventrolateral prefrontal cortex activity to win may reflect reward insensitivity in youth with disruptive behavior disorders. Despite a distinct reward-related neurophysiologic feature in disruptive behavior disorders, findings generally support a dimensional approach to studying neural mechanisms in behaviorally and emotionally dysregulated youth.

Figures in this Article

Pediatric disorders characterized by behavioral and emotional dysregulation, including bipolar spectrum disorders (BPSDs),1 major depressive disorder,2,3 attention-deficit/hyperactivity disorder (ADHD),47 disruptive behavior disorders (DBDs),8,9 and anxiety disorders,10,11 pose clinical challenges for diagnosis and treatment, particularly because of high comorbidity rates.1215 These disorders may thus be better conceptualized as comprising a set of dimensions of behavioral and emotional dysregulation abnormalities that cut across conventionally defined diagnostic categories. This dimensional approach to studying pediatric behavioral and emotional dysregulation parallels the Research Domain Criteria, which aims to elucidate physiologic dimensions reflecting the range of abnormality severity across categorically defined diagnoses.16

The Longitudinal Assessment of Manic Symptoms (LAMS) study is an ongoing multisite study of youth with a variety of behavioral and emotional dysregulation diagnoses, several of which include manic-like symptoms (Supplement [eAppendix]). The main purpose of LAMS is to assess relationships among the longitudinal course of symptoms, clinical outcomes, and functional outcomes in these youth. In addition to applying commonly used dimensional symptom measures of emotional dysregulation in youth (rating scales of mania, depression, and anxiety), LAMS also uses the Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M), a parent self-report dimensional measure of behavioral and emotional dysregulation behaviors in youth that includes measurement of manic-like behaviors associated with difficulty regulating positive mood and energy.17,18 The PGBI-10M scores were positively and significantly associated with higher scores on the Drive and Fun-Seeking subscales of the Behavioral Activation Scale in youth receiving outpatient services, suggesting that PGBI-10M also captures information regarding reward sensitivity in youth (E.A. Youngstrom, PhD, written communication, December 10, 2012) (Supplement [eAppendix]). Initial screening results from LAMS found that, irrespective of diagnosis, high PGBI-10M scores (≥12; test range is 0-30) were common (in 43% of these youth) and associated with worse overall functioning and higher rates of a variety of psychiatric disorders.19,20

To improve understanding of pathophysiologic processes underlying pediatric disorders characterized by behavioral and emotional dysregulation, neuroimaging studies should thus seek to identify (1) neuroimaging biomarkers associated with symptom dimensions characterized by behavioral and emotional dysregulation (eg, mania, depression, anxiety, and PGBI-10M), irrespective of diagnosis, and (2) neuroimaging biomarkers associated with distinct diagnostic categories (eg, BPSD, ADHD, anxiety disorders, DBD). The significant positive associations between PGBI-10M and reward sensitivity measures further suggest that neuroimaging studies of reward processing in behaviorally and emotionally dysregulated youth may, in particular, yield biomarkers of underlying pathophysiologic processes.

Neuroimaging studies in healthy adults highlight key roles of ventral striatum (VS) and different prefrontal cortical regions in reward processing: the VS is activated during changes in expected or obtained reward2123; the orbitofrontal cortex (OFC) (Brodmann area [BA]11) and ventrolateral prefrontal cortex (VLPFC) (BA47) track reward value and arousal during anticipation of rewarding stimuli24,25; the dorsal anterior cingulate cortex (dACC) (BA24/32) is involved in attention during reward-related decision making26; and the middle prefrontal cortex (mPFC) (BA10) is implicated in risky decision making in potentially rewarding contexts.27,28 Several studies reported abnormally increased reward sensitivity2931 and abnormally elevated reward-related VS,21,30 OFC, and VLPFC activity30,32,33 in adults with bipolar disorder. Abnormal reward-related neural activity has also been shown in youth with BPSD34 as well as in youth with other diagnoses characterized by behavioral and emotional dysregulation, including ADHD,35,36 anxiety disorders,37 and DBD.38,39

In the present study, we examined a large cohort of LAMS youth. Our primary aim was to identify specific neuroimaging measures associated with the severity of different dimensions of behavioral and emotional dysregulation in these youth irrespective of diagnosis. Our secondary aim was to identify neuroimaging measures associated with distinct diagnostic categories in these youth. We used a number-guessing reward paradigm40(win, loss, and control blocks) that has been used in neuroimaging studies of adolescents and adults with mood disorders30,41 and reliably activates key reward neural circuitry regions: dACC, mPFC, OFC, VLPFC, and VS.30,42 Using multiple regression analyses, we aimed to evaluate 2 separate hypotheses related to our primary and secondary aims.

Given the above-mentioned studies showing that behaviorally and emotionally dysregulated adults and youth across different diagnostic categories display abnormal prefrontal cortical-VS activity to reward (win vs control) compared with healthy control participants, we developed primary and secondary hypotheses as follows.

Primary Hypothesis (Dimensional)

Across all LAMS youth, irrespective of diagnosis, the magnitude of prefrontal cortical-VS activity to win (>control) would be significantly associated with greater severity of symptoms reflecting behavioral and emotional dysregulation (PGBI-10M, mania, depression, and anxiety).

Secondary Hypothesis (Categorical)

Patterns of prefrontal cortical-VS activity to win (>control) would differentiate current diagnostic categories in LAMS youth. The paucity of studies comparing reward circuitry activity in youth with different diagnostic categories did not allow us to specify the specific patterns of neural activity associated with each diagnostic category.

Control Group

We recruited a comparison group of healthy youth (HY) to examine the extent to which significant relationships between neural activity and symptom dimensions (or diagnostic categories) represented abnormal neural activity in LAMS youth. Again, the paucity of studies on this topic did not allow us to make specific hypotheses.

Participants

A total of 107 youth (aged 10-17 years) (Supplement [eTable 1]) from the original LAMS study participated in the neuroimaging component of the second phase of the LAMS study. Neuroimaging participants were recruited from 3 LAMS sites: 32 from University Hospitals Case Medical Center/Case Western Reserve University (CWRU), 37 from Cincinnati Children’s Hospital Medical Center (CCH); and 38 from University of Pittsburgh Medical Center/Western Psychiatric Institute and Clinic (UPMC). The study received institutional board approval at all scan sites. Twenty-two age- and sex ratio–matched HY recruited from all 3 sites (aged 8-16 years) (Supplement [eAppendix]) participated in this study for analyses comparing LAMS youth with HY. Parents/guardians provided written informed consent, and children provided written informed assent prior to study participation. Participants received monetary compensation and a framed picture of their structural neuroimaging scan. Exclusion criteria are reported in the Supplement (eAppendix).

Because of data loss and excessive head movement (>4 mm, as in previous studies41) during scanning, data from 22 LAMS youth and 2 HY were excluded, leaving data on 85 LAMS youth and 20 HY youth. In the LAMS group, mean (SD) age was 13.65 (1.96) years (range, 9.89-17.00 years); the sample (CWRU, 25 [29%]; CCH, 31 [36%]; and UPMC, 29 [34%]) included 46 males (54%) (Supplement [eTables 2 and 3]). In the 20 HY group, mean age was 13.31 (2.36) years (range, 8.03-16.92 years); the sample (CWRU, 6 [30%]; CCH, 2 [10%]; and UPMC, 12 [60%]) included 12 males (60%) (Supplement [eTable 2]). Participants excluded for movement were more likely to be male and have lower IQ scores (Supplement [eTable 1]).

Fifty-two (61%) of the 85 LAMS youth were taking at least 1 psychotropic medication (Supplement [eTable 2]). Of those 52 LAMS youth, 29 participants (34%) were taking 1 class of psychotropic medication; 15 youth (18%), 2 classes; 6 youth (7%), 3 classes; and 2 participants (24%), 4 classes. Given ethical problems with stopping medication for research participation, LAMS youth were permitted to use prescribed medications before and on the day of scanning.

Symptom Assessment

Youth in the LAMS group completed several symptom assessment measures. Parents/guardians completed the PGBI-10M (Supplement [eAppendix]) at baseline and 6-month intervals from study entry throughout both phases of LAMS. The PGBI-10M score nearest the scanning session (mean [SD] days between PGBI-10M assessment and scan date, 15.54 [35.01], range, 87 before to 143 days after the scan date) was included as a measure of the most recent PGB1-10M score (Supplement [eTable 2]). The PGBI-10M scores were very stable across 3 assessment points (ie, during 1 year) close to the scan day (Supplement [eAppendix]).

On the scan day, parents and children completed the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children Mania Rating Scale (K-MRS)43 to assess hypomania and mania severity and the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children Present Episode Depression Rating Scale (K-DRS)44 to assess depressive symptom severity (Supplement [eTable 2]). Interviewers made final decisions on summary scores based on all available information if parent and child responses differed. Participants completed the Screen for Child Anxiety Related Emotional Disorders (SCARED) on the scan day to assess the youths’ anxiety symptoms during the last 6 months (Supplement [eTable 2]).45

Diagnostic Categories

This final sample of 85 LAMS youth had a variety of current unmodified DSM-IV diagnoses, which were confirmed by a licensed child psychiatrist or psychologist: ADHD (27 [32%]), anxiety disorders (7 [8%]), BPSD (33 [39%]), and DBD (17 [20%]) (Supplement [eAppendix]).

Reward Paradigm

A block-design reward functional magnetic resonance imaging task40 examined reward-related neural circuitry (Figure 1). The Supplement (eAppendix) includes paradigm details.

Place holder to copy figure label and caption
Figure 1.
Adapted Reward Task40

Participants guessed whether a card (value, 1-9) was higher/lower than 5, then viewed the number, outcome (win, green arrow; loss, red arrow), and fixation cross. In control trials, participants pressed a button marked “X,” then viewed an asterisk, circle, and fixation cross.

Graphic Jump Location
Neuroimaging Data Analysis
Creation of a Single A Priori Anatomically Defined Bilateral Region of Interest Mask to Test Main Hypotheses

Statistical Parametric Mapping software (SPM8; Wellcome Department of Cognitive Neurology, Institute of Neurology, London, England) was used to preprocess and analyze functional magnetic resonance imaging data (Supplement [eAppendix]). Based on previous neuroimaging findings highlighting the roles of many regions in reward processing in healthy adults,30,33 several anatomically defined regions of interest (ROIs) were selected a priori to be included in a single ROI mask for testing our 2 main hypotheses: dACC (BA24/32), mPFC (BA10), OFC (BA11), VLPFC (BA47), and VS (bilateral spheres centered on the left [−9, 9, −8] and right [9, 9, and −8]; radius = 8 mm based on meta-analyses46,47). One anatomically defined bilateral mask containing all 5 of these bilateral individual ROIs was then created from the Wake Forest University PickAtlas48 for hypothesis testing. By using one large ROI mask, we avoided conducting multiple statistical tests over several small ROIs.

Identifying Neural Activity to Each Stimulus Contrast

After creating the mask, we established which regions in the entire a priori anatomically defined bilateral ROI mask showed significant activity to the 2 different reward task conditions: win > control and loss > control. We ran separate independent 2-tailed t tests for each of the 2 contrasts using a voxelwise P < .025 to correct for the 2 parallel tests (win > control and loss > control) and a cluster level α of P < .05, corrected with a cluster-forming threshold.49 Significant clusters of activity were then saved as stimulus contrast-related masks for use in the multiple regression analyses used to test hypotheses 1 and 2.

Statistical Approach to Test A Priori Hypotheses

We performed 2 sets of voxelwise multiple regression analyses (1 for each hypothesis) to determine which a priori dimensional (primary hypothesis) and categorical (secondary hypothesis) variables were significantly associated with neural activity to win > control and loss > control after accounting for demographic (age, IQ, and sex), scan site, signal to noise ratio (SNR) (described below), and medication status (taking vs not taking psychotropic medication) variables of no interest. To avoid model overfitting and balance type I and II errors, we adopted the following approach. First, we examined the univariate relationship between each of our variables (ie, variables of interest and variables of no interest) and neural activity using P < .05 voxelwise and P < .05 clusterwise significance thresholds. Variables that demonstrated a significant relationship were then added to a final multiple regression model containing all such variables. This allowed us to identify variables that remained significant in the final multiple regression model after accounting for all other variables of interest and variables of no interest. This procedure was repeated twice: once for the primary hypothesis involving the 4 dimensional symptom measures (K-DRS, K-MRS, PGBI-10M, and SCARED) and variables of no interest and once for the secondary hypothesis involving diagnostic categories (BPSD, ADHD, DBD, and anxiety disorders) and variables of no interest.

Finally, to determine the extent to which any observed relationships between dimensional measures and neural activity represented abnormalities in neural activity, we compared neural activity of LAMS youth with that of the HY. To do this, we identified the 20 highest- and 20 lowest-scoring LAMS youth on the dimensional measure of interest, and each of these 2 groups was compared with the 20 HY. For these analyses, we examined group differences in neural regions showing the associations between the dimensional measure and neural activity using a voxelwise threshold of P < .025 to control for the 2 between-group pairwise comparisons (20 highest-scoring LAMS youth vs HY, and 20 lowest-scoring LAMS youth vs 20 HY; P < .05, corrected threshold). All 3 groups were matched on group means for age, IQ, and sex ratio. Comparing the 2 groups of LAMS youth with the HY thereby allowed us to determine whether the pattern of neural activity was associated with the dimensional construct per se (ie, whether the highest-scoring LAMS sample, but not the lowest-scoring LAMS sample, differed significantly from HY in this pattern of neural activity) or was associated with psychopathology more generally (ie, if both LAMS samples differed from HY in this pattern of neural activity).

We conducted similar analyses regarding our secondary hypothesis. That is, when a significant relationship with a diagnostic category was identified in the multiple regression analysis, a follow-up analysis was conducted to further examine the extent to which this represented a pattern of abnormal neural activity vs HY. Here, similar analyses were performed as for our primary hypothesis, but this time comparing the 20 LAMS youth with, as well as 20 LAMS youth without, the diagnosis in question with the 20 HY. Here, all 3 groups were matched on group means for age, IQ, and sex ratio.

Analyses of Multisite Neuroimaging Data: Strategies to Reduce Intersite Signal Variability

We implemented several recommended measures to reduce interscan site variability using global signal normalization in first-level analyses (Supplement [eAppendix]),50 monitoring scanner signal stability over time (Supplement [eAppendix and eTable 4]), using scan site and SNR as covariates when appropriate (described above), and examining whether the main findings were paralleled by similar patterns of neural activity–behavioral relationships at each site (Supplement [eAppendix and eTable 9]).

Exploratory Analyses

Exploratory whole-brain (voxelwise P < .001; clusterwise corrected P < .05) analyses were conducted to win > control and loss > control contrasts to determine the extent to which patterns of whole-brain activity to these 2 stimulus contrasts were similar to patterns of neural activity in our a prior bilateral ROI mask.

In all LAMS youth, win > control significantly activated bilateral dACC (BA32), left mPFC, and bilateral VLPFC (P < .025, corrected P < .05) (Figure 2A and Table 1). Loss > control significantly activated bilateral dACC (BA32) and right VLPFC (P < .025, corrected P < .05) (Table 1). Exploratory whole-brain analyses revealed similar activation patterns (Supplement [eTable 5]).

Place holder to copy figure label and caption
Figure 2.
Entire Bilateral Region of Interest Mask Analysis to Win > Control in 85 Longitudinal Assessment of Manic Symptoms Youth

A, Left middle prefrontal cortical (mPFC), bilateral dorsal anterior cingulate cortical (dACC), and bilateral ventrolateral prefrontal cortex (VLPFC) activity (orange). B, Left mPFC activity and Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M) (teal) (r = 0.28). C, Overlap between left mPFC activity in A and B. D, Bilateral dACC activity and Screen for Child Anxiety Related Emotional Disorders (SCARED) (purple) (r = 0.27). E, Overlap between dACC activity in A and D. Markings on color bars indicate t test values; BA, Brodmann area; BOLD, blood oxygen level dependent; and SCARED.

Graphic Jump Location
Table Graphic Jump LocationTable 1.  Reward-Related Neural Activity in All 85 LAMS Youtha
Primary Hypothesis (Dimensional)

Initial univariate analyses revealed that the following symptom dimensional variables showed significant positive relationships (P < .05, corrected) with win > control neural activity: PGBI-10M and left mPFC (23 voxels) and SCARED and right dACC (BA32, 20 voxels). For loss > control, no significant relationships with any of the 4 dimensional measures were observed. Thus, we did not perform further analyses for loss > control.

Univariate analyses revealed the following significant relationships (P < .05, corrected) to win > control neural activity and variables of no interest: a positive relationship between age and bilateral dACC (left, 25 voxels; right, 22 voxels) and right VLPFC (13 voxels); sex and left dACC (15 voxels) and right VLPFC (35 voxels), with females more than males; and a negative relationship between SNR and right VLPFC (40 voxels). Medication status (taking vs not taking psychotropic medication) was not significantly associated with win > control neural activity.

We added these 3 variables of no interest (age, sex, and SNR) as covariates to a multiple regression model containing the 2 significant dimensional measures (PGBI-10M and SCARED). The 2 relationships between dimensional measures and neural activity observed in univariate analyses remained significant when these 3 covariates were added to the model (both P < .05, voxelwise; P < .05, corrected within the win > control activity mask): PGBI-10M and left anteriolateral mPFC (20 voxels; Pearson r = 0.28, P = .009; Spearman r = 0.23, P = .031 on extracted left anteriolateral mPFC blood oxygen level–dependent signal values) (Figure 2B and C) and SCARED and right ventral dACC (21 voxels; Pearson r = 0.27, P = .011; Spearman r = 0.21, P = .05) (Figure 2D and E and Table 2). The Supplement (eAppendix) reports associations between the 3 covariates and neural activity from this model.

Table Graphic Jump LocationTable 2.  Symptom Measures Associated With Reward-Related Neural Activity in all 85 LAMS Youtha

Regarding the comparison with HY, that group showed significantly less left anteriolateral mPFC activity than did LAMS youth with high PGBI-10M scores (20 voxels: t36 = 2.75; voxelwise P < .025; P < .05, corrected; Cohen d = 0.92) and LAMS youth with low PGBI-10M scores (11 voxels: t36 = 2.42; P < .025; P < .05, corrected; Cohen d = 0.81) (Figure 3 and Supplement [eTable 6]). There were no significant differences in right ventral dACC activity to win > control among the 20 LAMS youth with the highest SCARED score, 20 LAMS youth with the lowest SCARED score, and 20 HY (Supplement [eTable 7]).

Place holder to copy figure label and caption
Figure 3.
Group Contrast of Win > Control Activity in Left Middle Prefrontal Cortical (mPFC) Clusters Determined in Analyses Depicted in Figure 2A

Relative to healthy youth (n = 20) (black) Longitudinal Assessment of Manic Symptoms (LAMS) youth with high Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M) scores (n = 20) (red) and LAMS youth with low PGBI-10M scores (n = 20) (blue) had greater left mPFC activity. Markings on color bars indicate t test values; error bars, SD. BA indicates Brodmann area; BOLD, blood oxygen level dependent.aStatistically significant difference.

Graphic Jump Location
Secondary Hypothesis (Categorical)

Initial univariate analyses revealed that of the 3 categorical disorders tests, only DBD showed a significant relationship (P < .05, corrected) with significant clusters of activity to win > control in left VLPFC (21 voxels). There were no significant relationships between any diagnostic category and neural activity to loss > control. Thus, we did not perform further analyses of loss > control.

When the 3 variables of no interest showing significant relationships with win > control neural activity described above (age, sex, and SNR) were added to the multiple regression model, youth with DBD continued to show significantly reduced activity (P < .05 voxelwise; P < .05, corrected within the win > control activity mask) than youth without these disorders in left lateral VLPFC (19 voxels; t83 = 2.68; P = .009; with DBD: mean, −0.40 [0.46]; without DBD: mean, 0.28 [0.35]).

Regarding the comparison with HY, that group had significantly less left lateral VLPFC activity than did either LAMS youth with DBD (t32 = 3.69; P < .05, corrected; Cohen d = 1.30) or LAMS youth without DBD (t32 = 3.70; P < .05, corrected; Cohen d = 1.23) (Supplement [eTable 8]).

To examine whether the association between DBD and neural activity was independent of the associations between the 2 dimensional measures (PGBI-10M and SCARED), we constructed a final multiple regression model with each of these 3 variables as well as the significant covariates identified above (age, sex, and SNR). The 2 positive relationships between dimensional measures and neural activity remained significant when DBD was added to the model (both P < .05, corrected within the win > control activity mask): PGBI-10M and left anteriolateral mPFC (24 voxels), and SCARED and bilateral ventral dACC (left = 13 voxels and right = 21 voxels). Likewise, youth with DBD continued to show significantly reduced activity (P < .05, corrected) than did youth without these disorders in left lateral VLPFC (19 voxels).

The overall goal of the present study was to identify measures of activity in reward processing neural circuitry that were related to behavioral and emotional dysregulation in a large cohort of youth with several different diagnoses. We aimed to determine the extent to which these neuroimaging measures were associated with either dimensions of behavioral and emotional dysregulation, irrespective of diagnosis, or differentiated diagnostic categories. In support of our dimension-focused primary hypothesis, a greater PGBI-10M score, a stable measure of behavioral and emotional dysregulation within 6 months of scanning, was associated with greater left anteriolateral mPFC activity to win. Greater anxiety on the scanning day was associated with greater right ventral dACC activity to win. In support of our secondary diagnostic category–focused hypothesis, youth with DBD had lower left VLPFC activity to win than did youth without these disorders. These findings remained after including both dimensional measures and DBD in the same multiple regression model and even after accounting for demographic and SNR variables that showed significant relationships with win-related neural activity. Overall, LAMS youth activated bilateral dACC to win (>control) and loss (>control), suggesting that LAMS youth attended to both win and loss contexts given the role of the dACC in attentional processing.51 Our findings that greater right ventral dACC, part of the ACC affective subdivision,51 activity to win was associated with greater anxiety suggest that youth with more anxiety may have attended preferentially to win. However, there were no significant right ventral dACC activity differences among high anxious LAMS youth, low anxious LAMS youth, and HY. This may be the result of the greater power of a dimensional rather than a categorical (eg, between-group) approach for detecting brain-behavioral relationships.52 All LAMS youth also activated bilateral VLPFC to win and right VLPFC to loss, suggesting that both contexts were evaluated as salient given the role of the VLPFC in evaluation of emotionally salient contextual information.53 The right-sided focus of VPLFC activity to loss may, however, reflect the right hemisphere’s role in processing withdrawal-related emotional contexts.54

Left mPFC was activated only to win. Given the putative role of the left PFC in approach-related emotion processing,55 the role of the mPFC in risky decision making in potentially rewarding contexts,27,28 and the relationship between PGBI-10M and BAS subscales shown in a diagnostically heterogeneous cohort of youth (Youngstrom, personal communication), the positive relationship between left mPFC activity to win and PGBI-10M in LAMS youth suggests that activity in this region may be a biomarker of behavioral and emotional dysregulation and heightened reward sensitivity in rewarding contexts in these youth. Our additional finding that both the 20 LAMS youth with the highest and lowest PGBI-10M scores showed significantly greater left mPFC activity to win than 20 age-, IQ-, and sex-matched HY suggests that elevated left mPFC activity to win may represent an abnormal pathophysiologic process in LAMS youth. These findings parallel those of previous reports30,33 of elevated left prefrontal cortical activity to reward across different mood-disordered individuals vs healthy control participants and reports21,30,32 of heightened reward sensitivity in individuals with bipolar disorder. Our present finding thus suggests that elevated left prefrontal activity may reflect heightened sensitivity to reward-related cues and may be a biomarker of pathophysiologic processes associated with behavioral and emotional dysregulation and heightened reward sensitivity across different diagnoses in youth.

Of all diagnostic categories examined, only DBD showed disorder-specific abnormalities in reward circuitry: significantly reduced left VLPFC activity to win in LAMS youth with vs those without these disorders. These findings parallel previous reports of impaired functioning within OFC during reward processing in youth with conduct disorder38,39 as well as in individuals with higher levels of psychopathic traits.56,57 Given the role of the OFC and VLPFC in evaluation of reward and emotional contexts, these findings suggest that youth with DBD may evaluate rewarding contexts as less salient than youth without these disorders. This, in turn, may be associated with reduced reward sensitivity and result in the socially inappropriate behaviors characteristic of these youth.58 Additionally, LAMS youth with and without DBD showed significantly greater left VLPFC activity to win in relationship to age-, IQ-, and sex-matched HY, possibly because both LAMS subgroups had comorbid mood disorders. Further studies are needed to clarify the extent to which DBD may be associated with impaired functioning in reward circuitry in youth without behavioral and emotional dysregulation.

No significant clusters of activity in VS or OFC were shown by LAMS youth to win, suggesting prefrontal cortical-level attention and evaluative decision-making processing, rather than subcortical-level prediction error encoding or OFC-centered valuation, of reward in these youth. This may reflect the relatively high degree of certainty that participants had of obtaining reward (and thus low levels of prediction error and valuation) during win blocks. Interestingly, mania and depression were not associated with significant activity in a priori ROIs. These findings suggest that elevated left mPFC and bilateral dACC activity during reward processing may represent pathophysiologic processes underlying behavioral and emotional dysregulation, reward sensitivity, and anxiety, but are not associated with the types of behaviors specifically measured by mania and depression rating scales.

There were limitations to the study. We adopted an ROI approach in our analyses, given findings associating activity in specific ROIs during reward processing in healthy individuals.30,33 Exploratory whole-brain analyses, however, showed that patterns of whole-brain activity to the win and loss contrasts were similar to patterns of neural activity in our a prior bilateral ROI mask. Most (n = 52) participants were receiving medication, and of those, 23 were taking more than one class of psychotropic medication. Although we did not have enough statistical power to assess how using one vs multiple psychotropic medications influenced reward-related neural activity, univariate regression analyses revealed no significant effect of medication status (taking vs not taking psychotropic medication) on win > control neural activity. The use of atypical antipsychotic medication by approximately 27% of LAMS youth (n = 23) may have influenced reward-related neural activity through dopamine receptor blocking.59 We were unable to specifically examine this relationship, however, because of low statistical power for assessing potential individual medication confounds arising from the use of different types of atypical antipsychotics, which have different neurobiological mechanisms, and interactions between atypical antipsychotics and other classes of psychotropic medications, such as antidepressants, which may also influence dopaminergic activity. We did not include a measure of pubertal status, which has been associated with medial prefrontal activity (dACC)42 during reward outcome. The next phase of LAMS neuroimaging will include a self-report of pubertal status.60 Although an event-related design may have been more powerful for identifying interactions between groups and neural activity, our block design may have been more powerful for obtaining robust and statistically powerful neuroimaging findings.61

Youth were scanned at multiple sites, but interscanner differences were minimized by monitoring SNR monthly at each scan site using global signal normalization during functional magnetic resonance image processing and including scan site and SNR as covariates in analyses when appropriate. When SNR was included as a covariate, it was associated with a different pattern of neural activity from the main clinical measures of interest (Supplement [eAppendix]). Additionally, neural activity–behavioral relationships at each site were very similar to the main dimensional and categorical findings across all sites. The advantages of multisite neuroimaging (increased statistical power and a participant population from a variety of different environments) are likely to outweigh potential limitations. Although the range of PGBI-10M scores (0-24) captured both low and high levels of behavioral and emotional dysregulation in LAMS youth, the mean PGBI-10M score was low (6.09) (Supplement [eTable 1]). Further studies should replicate our findings and aim to examine youth with higher mean scores on this scale. Finally, PGBI-10M scores were not collected for HY, so we were unable to compare scores between the LAMS and HY groups.

There is a pressing need for objective biomarkers reflecting underlying pathophysiologic processes in psychiatric disorders in youth. The large cohort of symptomatically at-risk youth in LAMS provided a unique opportunity to examine the extent to which measures of function within neural circuitry supporting reward processing reflected dimensions of abnormality regardless of diagnosis or was associated with specific diagnostic categories. Our findings support a dimensional approach to the study of neural mechanisms in behaviorally and emotionally dysregulated youth, paralleling the focus of the National Institutes of Mental Health Research Domain Criteria.16 We also found evidence for distinct neurophysiologic processes during reward processing in youth with DBD. The combination of dimensional and diagnostic categorical approaches may identify biomarkers that can ultimately help identify and guide treatment for youth with, or at risk for, behavioral and emotional dysregulation abnormality.

Submitted for Publication: February 26, 2013; final revision received April 26, 2013; accepted May 1, 2013.

Corresponding Author: Genna Bebko, PhD, Department of Psychiatry, Western Psychiatric Institute and Clinic, 121 Meyran Ave, Loeffler Bldg, Room 205, Pittsburgh, PA 15213 (bebkog@upmc.edu).

Published Online: November 27, 2013. doi:10.1001/jamapsychiatry.2013.2870.

Author Contributions: Drs Bebko and Bertocci had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Almeida, Perlman, Versace, Rodriguez, Forbes, Kowatch, Birmaher, Axelson, Horwitz, Findling, Phillips.

Acquisition of data: Bebko, Bertocci, Hinze, Bonar, Almeida, Perlman, Versace, Schirda, Travis, Gill, Demeter, Sunshine, Holland, Kowatch, Axelson, Horwitz, Youngstrom, Findling.

Analysis and interpretation of data: Bebko, Bertocci, Fournier, Almeida, Schirda, Diwadkar, Ciuffetelli, Olino, Forbes, Holland, Kowatch, Arnold, Fristad, Findling, Phillips.

Drafting of the manuscript: Bebko, Bertocci, Bonar, Almeida, Demeter, Diwadkar, Holland, Phillips.

Critical revision of the manuscript for important intellectual content: Bebko, Bertocci, Fournier, Hinze, Almeida, Perlman, Versace, Schirda, Travis, Gill, Diwadkar, Ciuffetelli, Rodriguez, Olino, Forbes, Sunshine, Holland, Kowatch, Birmaher, Axelson, Horwitz, Arnold, Fristad, Youngstrom, Findling, Phillips.

Statistical analysis: Bebko, Bertocci, Fournier, Almeida, Diwadkar, Olino, Youngstrom, Phillips.

Obtained funding: Travis, Holland, Kowatch, Fristad, Findling, Phillips.

Administrative, technical, and material support: Hinze, Bonar, Schirda, Travis, Gill, Demeter, Ciuffetelli, Rodriguez, Sunshine, Holland, Kowatch, Birmaher, Axelson, Youngstrom, Findling, Phillips.

Study supervision: Almeida, Holland, Birmaher, Axelson, Findling, Phillips.

Conflict of Interest Disclosures: None reported.

Funding/Support: The study was supported by National Institute of Mental Health grants 2R01 MH73816-06A1 (Dr Holland, Children’s Hospital Medical Center), 2R01 MH73953-06A1 (Drs Birmaher and Phillips, University of Pittsburgh), 2R01 MH73801-06A1 (Dr Fristad, The Ohio State University), and 2R01 MH73967-06A1 (Dr Findling, Case Western Reserve University).

Role of the Sponsor: The National Institute of Mental Health had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Thomas W. Frazier, PhD, was involved in the planning of the LAMS study and reviewed and commented on the manuscript. He recived no financial compensation.

Leibenluft  E, Charney  DS, Pine  DS.  Researching the pathophysiology of pediatric bipolar disorder. Biol Psychiatry. 2003;53(11):1009-1020.
PubMed   |  Link to Article
Forbes  EE, Christopher May  J, Siegle  GJ,  et al.  Reward-related decision-making in pediatric major depressive disorder. J Child Psychol Psychiatry. 2006;47(10):1031-1040.
PubMed   |  Link to Article
Abela JRZ, Hankin BL. Handbook of Depression in Children and Adolescents. New York, NY: Guilford Press; 2007.
Barkley  R.  Deficient emotional self-regulation. J ADHD Relat Disord.2010;1(2):5-37.
Maedgen  JW, Carlson  CL.  Social functioning and emotional regulation in the attention deficit hyperactivity disorder subtypes. J Clin Child Psychol. 2000;29(1):30-42.
PubMed   |  Link to Article
Musser  ED, Backs  RW, Schmitt  CF, Ablow  JC, Measelle  JR, Nigg  JT.  Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD). J Abnorm Child Psychol. 2011;39(6):841-852.
PubMed   |  Link to Article
Luman  M, Oosterlaan  J, Sergeant  JA.  The impact of reinforcement contingencies on AD/HD. Clin Psychol Rev. 2005;25(2):183-213.
PubMed   |  Link to Article
Cole PM, Zahn-Waxler C. Emotional dysregulation in disruptive behavior disorders. In: Ciccketti D, Toth SL, eds. Rochester Symposium on Developmental Psychopathology. Rochester, NY: University of Rochester Press; 1992:173-210. Developmental Perspectives on Depression; vol 4.
O’Brien  BS, Frick  PJ.  Reward dominance: associations with anxiety, conduct problems, and psychopathy in children. J Abnorm Child Psychol. 1996;24(2):223-240.
PubMed   |  Link to Article
Cole  PM, Michel  MK, Teti  LOD.  The development of emotion regulation and dysregulation. Monogr Soc Res Child Dev. 1994;59(2-3):73-100.
PubMed   |  Link to Article
Hirshfeld  DR, Rosenbaum  JF, Biederman  J,  et al.  Stable behavioral inhibition and its association with anxiety disorder. J Am Acad Child Adolesc Psychiatry. 1992;31(1):103-111.
PubMed   |  Link to Article
Pavuluri  MN, Birmaher  B, Naylor  MW.  Pediatric bipolar disorder. J Am Acad Child Adolesc Psychiatry. 2005;44(9):846-871.
PubMed   |  Link to Article
Arnold  LE, Demeter  C, Mount  K,  et al.  Pediatric bipolar spectrum disorder and ADHD: comparison and comorbidity in the LAMS clinical sample. Bipolar Disord. 2011;13(5-6):509-521.
PubMed   |  Link to Article
Arnold  LE, Mount  K, Frazier  T,  et al.  Pediatric bipolar disorder and ADHD: family history comparison in the LAMS clinical sample. J Affect Disord. 2012;141(2-3):382-389.
PubMed   |  Link to Article
Kowatch  RA, Youngstrom  EA, Danielyan  A, Findling  RL.  Review and meta-analysis of the phenomenology and clinical characteristics of mania in children and adolescents. Bipolar Disord. 2005;7(6):483-496.
PubMed   |  Link to Article
Insel  TR, Cuthbert  BN, Garvey  MA,  et al.  Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748-751.
PubMed   |  Link to Article
Youngstrom  E, Meyers  O, Demeter  C,  et al.  Comparing diagnostic checklists for pediatric bipolar disorder in academic and community mental health settings. Bipolar Disord. 2005;7(6):507-517.
PubMed   |  Link to Article
Youngstrom  EA, Frazier  TW, Demeter  C, Calabrese  JR, Findling  RL.  Developing a 10-item mania scale from the Parent General Behavior Inventory for children and adolescents. J Clin Psychiatry. 2008;69(5):831-839.
PubMed   |  Link to Article
Findling  RL, Youngstrom  EA, Fristad  MA,  et al.  Characteristics of children with elevated symptoms of mania: the Longitudinal Assessment of Manic Symptoms (LAMS) study. J Clin Psychiatry. 2010;71(12):1664-1672.
PubMed   |  Link to Article
Horwitz  SMC, Demeter  CA, Pagano  ME,  et al.  Longitudinal Assessment of Manic Symptoms (LAMS) study: background, design, and initial screening results. J Clin Psychiatry. 2010;71(11):1511-1517.
PubMed   |  Link to Article
Abler  B, Herrnberger  B, Grön  G, Spitzer  M.  From uncertainty to reward: BOLD characteristics differentiate signaling pathways. BMC Neurosci. 2009;10(1):154.
PubMed   |  Link to Article
O’Doherty  JP, Dayan  P, Friston  K, Critchley  H, Dolan  RJ.  Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329-337.
PubMed   |  Link to Article
Pagnoni  G, Zink  CF, Montague  PR, Berns  GS.  Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci. 2002;5(2):97-98.
PubMed   |  Link to Article
Kahnt  T, Heinzle  J, Park  SQ, Haynes  JD.  The neural code of reward anticipation in human orbitofrontal cortex. Proc Natl Acad Sci U S A. 2010;107(13):6010-6015.
PubMed   |  Link to Article
Rolls  ET, Grabenhorst  F.  The orbitofrontal cortex and beyond. Prog Neurobiol. 2008;86(3):216-244.
PubMed   |  Link to Article
Bush  G, Vogt  BA, Holmes  J,  et al.  Dorsal anterior cingulate cortex. Proc Natl Acad Sci U S A. 2002;99(1):523-528.
PubMed   |  Link to Article
Lawrence  NS, Jollant  F, O’Daly  O, Zelaya  F, Phillips  ML.  Distinct roles of prefrontal cortical subregions in the Iowa Gambling Task. Cereb Cortex. 2009;19(5):1134-1143.
PubMed   |  Link to Article
Xue  G, Lu  Z, Levin  IP, Weller  JA, Li  X, Bechara  A.  Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex. 2009;19(5):1019-1027.
PubMed   |  Link to Article
Meyer  B, Johnson  SL, Winters  R.  Responsiveness to threat and incentive in bipolar disorder: relations of the BIS/BAS scales with symptoms. J Psychopathol Behav Assess. 2001;23(3):133-143.
PubMed   |  Link to Article
Nusslock  R, Almeida  JRC, Forbes  EE,  et al.  Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord. 2012;14(3):249-260.
PubMed   |  Link to Article
Urosević  S, Abramson  LY, Harmon-Jones  E, Alloy  LB.  Dysregulation of the behavioral approach system (BAS) in bipolar spectrum disorders. Clin Psychol Rev. 2008;28(7):1188-1205.
PubMed   |  Link to Article
Bermpohl  F, Kahnt  T, Dalanay  U,  et al.  Altered representation of expected value in the orbitofrontal cortex in mania. Hum Brain Mapp. 2010;31(7):958-969.
PubMed   |  Link to Article
Caseras  X, Lawrence  NS, Murphy  K, Wise  RG, Phillips  ML.  Ventral striatum activity in response to reward: differences between bipolar I from bipolar II disorders [published online April 5, 2013]. Am J Psychiatry. doi:10.1176/appi.ajp.2012.12020169.
Dickstein  DP, Finger  EC, Skup  M, Pine  DS, Blair  JR, Leibenluft  E.  Altered neural function in pediatric bipolar disorder during reversal learning. Bipolar Disord. 2010;12(7):707-719.
PubMed   |  Link to Article
Rubia  K, Halari  R, Cubillo  A, Mohammad  AM, Brammer  M, Taylor  E.  Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology. 2009;57(7-8):640-652.
PubMed   |  Link to Article
Scheres  A, Milham  MP, Knutson  B, Castellanos  FX.  Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61(5):720-724.
PubMed   |  Link to Article
Guyer  AE, Choate  VR, Detloff  A,  et al.  Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. Am J Psychiatry. 2012;169(2):205-212.
PubMed   |  Link to Article
Rubia  K, Smith  AB, Halari  R,  et al.  Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatry. 2009;166(1):83-94.
PubMed   |  Link to Article
Finger  EC, Marsh  AA, Blair  KS,  et al.  Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am J Psychiatry. 2011;168(2):152-162.
PubMed   |  Link to Article
Forbes  EE, Brown  SM, Kimak  M, Ferrell  RE, Manuck  SB, Hariri  AR.  Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry. 2009;14(1):60-70.
PubMed   |  Link to Article
Forbes  EE, Hariri  AR, Martin  SL,  et al.  Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry. 2009;166(1):64-73.
PubMed   |  Link to Article
Forbes  EE, Ryan  ND, Phillips  ML, Manuck  SB, Worthman  CM, Moyles  DL,  et al.  Healthy adolescents' neural response to reward: associations with puberty, positive affect, and depressive symptoms. J Am Acad Child Adolesc Psychiatry. 2010;49(2):162-72.e1-e5. doi:10.1016/j.jaac.2009.11.006.
PubMed
Axelson  D, Birmaher  BJ, Brent  D,  et al.  A preliminary study of the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children mania rating scale for children and adolescents. J Child Adolesc Psychopharmacol. 2003;13(4):463-470.
PubMed   |  Link to Article
Kaufman  J, Birmaher  B, Brent  D,  et al.  Schedule for affective disorders and schizophrenia for school-age children—present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980-988.
PubMed   |  Link to Article
Birmaher  B, Khetarpal  S, Brent  D,  et al.  The Screen for Child Anxiety Related Emotional Disorders (SCARED): scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry. 1997;36(4):545-553.
PubMed   |  Link to Article
Di Martino  A, Scheres  A, Margulies  DS,  et al.  Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex. 2008;18(12):2735-2747.
PubMed   |  Link to Article
Postuma  RB, Dagher  A.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex. 2006;16(10):1508-1521.
PubMed   |  Link to Article
Maldjian  JA, Laurienti  PJ, Kraft  RA, Burdette  JH.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233-1239.
PubMed   |  Link to Article
Ward  B. AlphaSim. Bethesda, MD: National Institute of Mental Health; 2002.
Eklund  A, Andersson  M, Josephson  C, Johannesson  M, Knutsson  H.  Does parametric fMRI analysis with SPM yield valid results? an empirical study of 1484 rest datasets. Neuroimage. 2012;61(3):565-578.
PubMed   |  Link to Article
Bush  G, Luu  P, Posner  MI.  Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215-222.
PubMed   |  Link to Article
MacCallum  RC, Zhang  S, Preacher  KJ, Rucker  DD.  On the practice of dichotomization of quantitative variables. Psychol Methods. 2002;7(1):19-40.
PubMed   |  Link to Article
Phillips  ML, Drevets  WC, Rauch  SL, Lane  R.  Neurobiology of emotion perception, I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504-514.
PubMed   |  Link to Article
Davidson  RJ, Ekman  P, Saron  CD, Senulis  JA, Friesen  WV.  Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology, I. J Pers Soc Psychol. 1990;58(2):330-341.
PubMed   |  Link to Article
Harmon-Jones  E, Gable  PA, Peterson  CK.  The role of asymmetric frontal cortical activity in emotion-related phenomena. Biol Psychol. 2010;84(3):451-462.
PubMed   |  Link to Article
Blair  RJ.  The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci. 2007;11(9):387-392.
PubMed   |  Link to Article
Blair  R.  The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philos Trans R Soc Lond B Biol Sci. 2008;363(1503):2557-2265.
PubMed   |  Link to Article
Matthys  W, Vanderschuren  LJMJ, Schutter  DJLG.  The neurobiology of oppositional defiant disorder and conduct disorder: altered functioning in three mental domains. Dev Psychopathol. 2013;25(1):193-207.
PubMed   |  Link to Article
Yatham  LN, Goldstein  JM, Vieta  E,  et al.  Atypical antipsychotics in bipolar depression: potential mechanisms of action. J Clin Psychiatry. 2005;66(suppl 5):40-48.
PubMed
Petersen  AC, Crockett  L, Richards  M, Boxer  A.  A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17(2):117-133.
Link to Article
Amaro  E  Jr, Barker  GJ.  Study design in fMRI: basic principles. Brain Cogn. 2006;60(3):220-232.
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Figure 1.
Adapted Reward Task40

Participants guessed whether a card (value, 1-9) was higher/lower than 5, then viewed the number, outcome (win, green arrow; loss, red arrow), and fixation cross. In control trials, participants pressed a button marked “X,” then viewed an asterisk, circle, and fixation cross.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Entire Bilateral Region of Interest Mask Analysis to Win > Control in 85 Longitudinal Assessment of Manic Symptoms Youth

A, Left middle prefrontal cortical (mPFC), bilateral dorsal anterior cingulate cortical (dACC), and bilateral ventrolateral prefrontal cortex (VLPFC) activity (orange). B, Left mPFC activity and Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M) (teal) (r = 0.28). C, Overlap between left mPFC activity in A and B. D, Bilateral dACC activity and Screen for Child Anxiety Related Emotional Disorders (SCARED) (purple) (r = 0.27). E, Overlap between dACC activity in A and D. Markings on color bars indicate t test values; BA, Brodmann area; BOLD, blood oxygen level dependent; and SCARED.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Group Contrast of Win > Control Activity in Left Middle Prefrontal Cortical (mPFC) Clusters Determined in Analyses Depicted in Figure 2A

Relative to healthy youth (n = 20) (black) Longitudinal Assessment of Manic Symptoms (LAMS) youth with high Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M) scores (n = 20) (red) and LAMS youth with low PGBI-10M scores (n = 20) (blue) had greater left mPFC activity. Markings on color bars indicate t test values; error bars, SD. BA indicates Brodmann area; BOLD, blood oxygen level dependent.aStatistically significant difference.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1.  Reward-Related Neural Activity in All 85 LAMS Youtha
Table Graphic Jump LocationTable 2.  Symptom Measures Associated With Reward-Related Neural Activity in all 85 LAMS Youtha

References

Leibenluft  E, Charney  DS, Pine  DS.  Researching the pathophysiology of pediatric bipolar disorder. Biol Psychiatry. 2003;53(11):1009-1020.
PubMed   |  Link to Article
Forbes  EE, Christopher May  J, Siegle  GJ,  et al.  Reward-related decision-making in pediatric major depressive disorder. J Child Psychol Psychiatry. 2006;47(10):1031-1040.
PubMed   |  Link to Article
Abela JRZ, Hankin BL. Handbook of Depression in Children and Adolescents. New York, NY: Guilford Press; 2007.
Barkley  R.  Deficient emotional self-regulation. J ADHD Relat Disord.2010;1(2):5-37.
Maedgen  JW, Carlson  CL.  Social functioning and emotional regulation in the attention deficit hyperactivity disorder subtypes. J Clin Child Psychol. 2000;29(1):30-42.
PubMed   |  Link to Article
Musser  ED, Backs  RW, Schmitt  CF, Ablow  JC, Measelle  JR, Nigg  JT.  Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD). J Abnorm Child Psychol. 2011;39(6):841-852.
PubMed   |  Link to Article
Luman  M, Oosterlaan  J, Sergeant  JA.  The impact of reinforcement contingencies on AD/HD. Clin Psychol Rev. 2005;25(2):183-213.
PubMed   |  Link to Article
Cole PM, Zahn-Waxler C. Emotional dysregulation in disruptive behavior disorders. In: Ciccketti D, Toth SL, eds. Rochester Symposium on Developmental Psychopathology. Rochester, NY: University of Rochester Press; 1992:173-210. Developmental Perspectives on Depression; vol 4.
O’Brien  BS, Frick  PJ.  Reward dominance: associations with anxiety, conduct problems, and psychopathy in children. J Abnorm Child Psychol. 1996;24(2):223-240.
PubMed   |  Link to Article
Cole  PM, Michel  MK, Teti  LOD.  The development of emotion regulation and dysregulation. Monogr Soc Res Child Dev. 1994;59(2-3):73-100.
PubMed   |  Link to Article
Hirshfeld  DR, Rosenbaum  JF, Biederman  J,  et al.  Stable behavioral inhibition and its association with anxiety disorder. J Am Acad Child Adolesc Psychiatry. 1992;31(1):103-111.
PubMed   |  Link to Article
Pavuluri  MN, Birmaher  B, Naylor  MW.  Pediatric bipolar disorder. J Am Acad Child Adolesc Psychiatry. 2005;44(9):846-871.
PubMed   |  Link to Article
Arnold  LE, Demeter  C, Mount  K,  et al.  Pediatric bipolar spectrum disorder and ADHD: comparison and comorbidity in the LAMS clinical sample. Bipolar Disord. 2011;13(5-6):509-521.
PubMed   |  Link to Article
Arnold  LE, Mount  K, Frazier  T,  et al.  Pediatric bipolar disorder and ADHD: family history comparison in the LAMS clinical sample. J Affect Disord. 2012;141(2-3):382-389.
PubMed   |  Link to Article
Kowatch  RA, Youngstrom  EA, Danielyan  A, Findling  RL.  Review and meta-analysis of the phenomenology and clinical characteristics of mania in children and adolescents. Bipolar Disord. 2005;7(6):483-496.
PubMed   |  Link to Article
Insel  TR, Cuthbert  BN, Garvey  MA,  et al.  Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167(7):748-751.
PubMed   |  Link to Article
Youngstrom  E, Meyers  O, Demeter  C,  et al.  Comparing diagnostic checklists for pediatric bipolar disorder in academic and community mental health settings. Bipolar Disord. 2005;7(6):507-517.
PubMed   |  Link to Article
Youngstrom  EA, Frazier  TW, Demeter  C, Calabrese  JR, Findling  RL.  Developing a 10-item mania scale from the Parent General Behavior Inventory for children and adolescents. J Clin Psychiatry. 2008;69(5):831-839.
PubMed   |  Link to Article
Findling  RL, Youngstrom  EA, Fristad  MA,  et al.  Characteristics of children with elevated symptoms of mania: the Longitudinal Assessment of Manic Symptoms (LAMS) study. J Clin Psychiatry. 2010;71(12):1664-1672.
PubMed   |  Link to Article
Horwitz  SMC, Demeter  CA, Pagano  ME,  et al.  Longitudinal Assessment of Manic Symptoms (LAMS) study: background, design, and initial screening results. J Clin Psychiatry. 2010;71(11):1511-1517.
PubMed   |  Link to Article
Abler  B, Herrnberger  B, Grön  G, Spitzer  M.  From uncertainty to reward: BOLD characteristics differentiate signaling pathways. BMC Neurosci. 2009;10(1):154.
PubMed   |  Link to Article
O’Doherty  JP, Dayan  P, Friston  K, Critchley  H, Dolan  RJ.  Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329-337.
PubMed   |  Link to Article
Pagnoni  G, Zink  CF, Montague  PR, Berns  GS.  Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci. 2002;5(2):97-98.
PubMed   |  Link to Article
Kahnt  T, Heinzle  J, Park  SQ, Haynes  JD.  The neural code of reward anticipation in human orbitofrontal cortex. Proc Natl Acad Sci U S A. 2010;107(13):6010-6015.
PubMed   |  Link to Article
Rolls  ET, Grabenhorst  F.  The orbitofrontal cortex and beyond. Prog Neurobiol. 2008;86(3):216-244.
PubMed   |  Link to Article
Bush  G, Vogt  BA, Holmes  J,  et al.  Dorsal anterior cingulate cortex. Proc Natl Acad Sci U S A. 2002;99(1):523-528.
PubMed   |  Link to Article
Lawrence  NS, Jollant  F, O’Daly  O, Zelaya  F, Phillips  ML.  Distinct roles of prefrontal cortical subregions in the Iowa Gambling Task. Cereb Cortex. 2009;19(5):1134-1143.
PubMed   |  Link to Article
Xue  G, Lu  Z, Levin  IP, Weller  JA, Li  X, Bechara  A.  Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex. 2009;19(5):1019-1027.
PubMed   |  Link to Article
Meyer  B, Johnson  SL, Winters  R.  Responsiveness to threat and incentive in bipolar disorder: relations of the BIS/BAS scales with symptoms. J Psychopathol Behav Assess. 2001;23(3):133-143.
PubMed   |  Link to Article
Nusslock  R, Almeida  JRC, Forbes  EE,  et al.  Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord. 2012;14(3):249-260.
PubMed   |  Link to Article
Urosević  S, Abramson  LY, Harmon-Jones  E, Alloy  LB.  Dysregulation of the behavioral approach system (BAS) in bipolar spectrum disorders. Clin Psychol Rev. 2008;28(7):1188-1205.
PubMed   |  Link to Article
Bermpohl  F, Kahnt  T, Dalanay  U,  et al.  Altered representation of expected value in the orbitofrontal cortex in mania. Hum Brain Mapp. 2010;31(7):958-969.
PubMed   |  Link to Article
Caseras  X, Lawrence  NS, Murphy  K, Wise  RG, Phillips  ML.  Ventral striatum activity in response to reward: differences between bipolar I from bipolar II disorders [published online April 5, 2013]. Am J Psychiatry. doi:10.1176/appi.ajp.2012.12020169.
Dickstein  DP, Finger  EC, Skup  M, Pine  DS, Blair  JR, Leibenluft  E.  Altered neural function in pediatric bipolar disorder during reversal learning. Bipolar Disord. 2010;12(7):707-719.
PubMed   |  Link to Article
Rubia  K, Halari  R, Cubillo  A, Mohammad  AM, Brammer  M, Taylor  E.  Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Neuropharmacology. 2009;57(7-8):640-652.
PubMed   |  Link to Article
Scheres  A, Milham  MP, Knutson  B, Castellanos  FX.  Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61(5):720-724.
PubMed   |  Link to Article
Guyer  AE, Choate  VR, Detloff  A,  et al.  Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. Am J Psychiatry. 2012;169(2):205-212.
PubMed   |  Link to Article
Rubia  K, Smith  AB, Halari  R,  et al.  Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatry. 2009;166(1):83-94.
PubMed   |  Link to Article
Finger  EC, Marsh  AA, Blair  KS,  et al.  Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am J Psychiatry. 2011;168(2):152-162.
PubMed   |  Link to Article
Forbes  EE, Brown  SM, Kimak  M, Ferrell  RE, Manuck  SB, Hariri  AR.  Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry. 2009;14(1):60-70.
PubMed   |  Link to Article
Forbes  EE, Hariri  AR, Martin  SL,  et al.  Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry. 2009;166(1):64-73.
PubMed   |  Link to Article
Forbes  EE, Ryan  ND, Phillips  ML, Manuck  SB, Worthman  CM, Moyles  DL,  et al.  Healthy adolescents' neural response to reward: associations with puberty, positive affect, and depressive symptoms. J Am Acad Child Adolesc Psychiatry. 2010;49(2):162-72.e1-e5. doi:10.1016/j.jaac.2009.11.006.
PubMed
Axelson  D, Birmaher  BJ, Brent  D,  et al.  A preliminary study of the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children mania rating scale for children and adolescents. J Child Adolesc Psychopharmacol. 2003;13(4):463-470.
PubMed   |  Link to Article
Kaufman  J, Birmaher  B, Brent  D,  et al.  Schedule for affective disorders and schizophrenia for school-age children—present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980-988.
PubMed   |  Link to Article
Birmaher  B, Khetarpal  S, Brent  D,  et al.  The Screen for Child Anxiety Related Emotional Disorders (SCARED): scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry. 1997;36(4):545-553.
PubMed   |  Link to Article
Di Martino  A, Scheres  A, Margulies  DS,  et al.  Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex. 2008;18(12):2735-2747.
PubMed   |  Link to Article
Postuma  RB, Dagher  A.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex. 2006;16(10):1508-1521.
PubMed   |  Link to Article
Maldjian  JA, Laurienti  PJ, Kraft  RA, Burdette  JH.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233-1239.
PubMed   |  Link to Article
Ward  B. AlphaSim. Bethesda, MD: National Institute of Mental Health; 2002.
Eklund  A, Andersson  M, Josephson  C, Johannesson  M, Knutsson  H.  Does parametric fMRI analysis with SPM yield valid results? an empirical study of 1484 rest datasets. Neuroimage. 2012;61(3):565-578.
PubMed   |  Link to Article
Bush  G, Luu  P, Posner  MI.  Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215-222.
PubMed   |  Link to Article
MacCallum  RC, Zhang  S, Preacher  KJ, Rucker  DD.  On the practice of dichotomization of quantitative variables. Psychol Methods. 2002;7(1):19-40.
PubMed   |  Link to Article
Phillips  ML, Drevets  WC, Rauch  SL, Lane  R.  Neurobiology of emotion perception, I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504-514.
PubMed   |  Link to Article
Davidson  RJ, Ekman  P, Saron  CD, Senulis  JA, Friesen  WV.  Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology, I. J Pers Soc Psychol. 1990;58(2):330-341.
PubMed   |  Link to Article
Harmon-Jones  E, Gable  PA, Peterson  CK.  The role of asymmetric frontal cortical activity in emotion-related phenomena. Biol Psychol. 2010;84(3):451-462.
PubMed   |  Link to Article
Blair  RJ.  The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci. 2007;11(9):387-392.
PubMed   |  Link to Article
Blair  R.  The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philos Trans R Soc Lond B Biol Sci. 2008;363(1503):2557-2265.
PubMed   |  Link to Article
Matthys  W, Vanderschuren  LJMJ, Schutter  DJLG.  The neurobiology of oppositional defiant disorder and conduct disorder: altered functioning in three mental domains. Dev Psychopathol. 2013;25(1):193-207.
PubMed   |  Link to Article
Yatham  LN, Goldstein  JM, Vieta  E,  et al.  Atypical antipsychotics in bipolar depression: potential mechanisms of action. J Clin Psychiatry. 2005;66(suppl 5):40-48.
PubMed
Petersen  AC, Crockett  L, Richards  M, Boxer  A.  A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17(2):117-133.
Link to Article
Amaro  E  Jr, Barker  GJ.  Study design in fMRI: basic principles. Brain Cogn. 2006;60(3):220-232.
PubMed   |  Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Supplement.

eAppendix. Supplemental text

eTable 1. Demographic information, clinical variables, and current medication usage (mean [SD] or proportion) describing the LAMS participants included versus excluded from neuroimaging

eTable 2. Demographic information, clinical variables, and current medication usage (mean [SD] or proportion) describing LAMS youth (n=85) and healthy youth (n=20)

eTable 3. Demographic information, clinical variables, and current medication usage (mean [SD] or proportion) describing the LAMS participants from the three neuroimaging sites

eTable 4. Monthly signal-to-noise ratio values for the BIRN phantoms at each scan site

eTable 5. Whole brain activity to each stimulus contrast

eTable 6. Demographic information (mean [SD] or proportion) and neural activity comparing the twenty LAMS youth with the highest PGBI-10M scores, twenty LAMS youth with the lowest PGBI-10M scores, and twenty healthy youth

eTable 7. Demographic information (mean [SD] or proportion) comparing the twenty LAMS youth with the highest SCARED scores, twenty LAMS youth with the lowest SCARED scores, and twenty healthy youth

eTable 8. Demographic information (mean [SD] or proportion) and neural activity comparing the sixteen LAMS youth with disruptive behavior disorders, twenty LAMS youth without disruptive behavior disorders, and twenty healthy youth

eTable 9. Main neural activity-behavioral relationships identified in hypothesis one and two at each scan site

Supplemental Content

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 8

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Update

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Make the Diagnosis: Abdominal Aortic Aneurysm