0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Atypical Cross Talk Between Mentalizing and Mirror Neuron Networks in Autism Spectrum Disorder

Inna Fishman, PhD1; Christopher L. Keown, MS1; Alan J. Lincoln, PhD2; Jaime A. Pineda, PhD3; Ralph-Axel Müller, PhD1
[+] Author Affiliations
1San Diego State University, San Diego, California
2Alliant International University, San Diego, California
3University of California San Diego, La Jolla, California
JAMA Psychiatry. 2014;71(7):751-760. doi:10.1001/jamapsychiatry.2014.83.
Text Size: A A A
Published online

Importance  Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but it is unclear whether altered connectivity is especially prominent in brain networks that participate in social cognition.

Objective  To investigate whether adolescents with ASD show altered functional connectivity in 2 brain networks putatively impaired in ASD and involved in social processing, theory of mind (ToM) and mirror neuron system (MNS).

Design, Setting, and Participants  Cross-sectional study using resting-state functional magnetic resonance imaging involving 25 adolescents with ASD between the ages of 11 and 18 years and 25 typically developing adolescents matched for age, handedness, and nonverbal IQ.

Main Outcomes and Measures  Statistical parametric maps testing the degree of whole-brain functional connectivity and social functioning measures.

Results  Relative to typically developing controls, participants with ASD showed a mixed pattern of both over- and underconnectivity in the ToM network, which was associated with greater social impairment. Increased connectivity in the ASD group was detected primarily between the regions of the MNS and ToM, and was correlated with sociocommunicative measures, suggesting that excessive ToM-MNS cross talk might be associated with social impairment. In a secondary analysis comparing a subset of the 15 participants with ASD with the most severe symptomology and a tightly matched subset of 15 typically developing controls, participants with ASD showed exclusive overconnectivity effects in both ToM and MNS networks, which were also associated with greater social dysfunction.

Conclusions and Relevance  Adolescents with ASD showed atypically increased functional connectivity involving the mentalizing and mirror neuron systems, largely reflecting greater cross talk between the 2. This finding is consistent with emerging evidence of reduced network segregation in ASD and challenges the prevailing theory of general long-distance underconnectivity in ASD. This excess ToM-MNS connectivity may reflect immature or aberrant developmental processes in 2 brain networks involved in understanding of others, a domain of impairment in ASD. Further, robust links with sociocommunicative symptoms of ASD implicate atypically increased ToM-MNS connectivity in social deficits observed in ASD.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

First Page Preview

View Large
First page PDF preview

Figures

Place holder to copy figure label and caption
Figure 1.
Within-Group Functional Connectivity Maps for Mirror Neuron System (MNS) (Top Panel) and Theory of Mind (ToM) (Bottom Panel) Seeds

Results of the within-group (autism spectrum disorder [ASD], typically developing [TD]; P < .05, corrected) analyses obtained for each MNS and ToM seed (top and bottom panels, respectively) are presented in a conjunction view. Seed regions of interest are presented on the axial slices on the left (red dots reflect the actual size of the spherical regions of interest). Inflated maps were generated using Surface Mapping with Analysis of Functional NeuroImages (SUMA, http://afni.nimh.nih.gov/afni/suma). L indicates left; laIPS, left anterior intraparietal sulcus (Talairach coordinates −40, −40, 45); lpSTS, left posterior superior temporal sulcus (−50, −55, 10); lPMC, left premotor cortex (–40, 5, 40); lTPJ, left temporal-parietal junction (−50, −55, 25); mPFC, medial prefrontal cortex (0, 50, 20); PC, precuneus; PCC, posterior cingulate cortex (0, −60, 40); R, right; raIPS, right anterior intraparietal sulcus (40, –40, 45); rpSTS, right posterior superior temporal sulcus (50, −55, 10); rPMC, right premotor cortex (40, 5, 40); and rTPJ, right temporal-parietal junction (50, −55, 25).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Regions Exhibiting Group Differences (Autism Spectrum Disorder [ASD] vs Typically Developing [TD]) in Functional Connectivity (FC) and the Relationship Between FC and Clinical Severity in the ASD Group

A, Clusters of significantly different FC (P < .05, corrected) in participants with ASD relative to the TD participants are illustrated for the theory of mind (ToM) seeds. The scatterplot on the right shows the relationship between the ToM–mirror neuron system (MNS) overconnectivity (average z scores for all between-network region of interest pairs) and social symptomatology measured by the Autism Diagnostic Interview–Revised (ADI-R) Social scores (Spearman r25 = 0.58, P = .003). B, Clusters of significantly different FC (P < .05, corrected) in the subset of 15 participants with ASD and Autism Diagnostic Observation Schedule (ADOS) Communication + Social (CS) of 10 or greater and 15 matched TD participants. All depicted ToM and MNS seeds yielded overconnected clusters (ASD > TD). The scatterplot on the right shows the relationship between the ToM-MNS overconnectivity (average z scores for all between-network region of interest pairs) and social symptoms measured by the ADI-R Social scores (Spearman r15 = 0.56, P = .04). Increasing ADI-Social values indicate greater social impairment. lTPJ indicates left temporal-parietal junction; L, left; mPFC, medial prefrontal cortex; PC, precuneus; PCC, posterior cingulate cortex; raIPS, right anterior intraparietal sulcus, R, right; and rTPJ, right temporal-parietal junction.

Graphic Jump Location

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 1

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Multimedia

Author Interview

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();