We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
News and Views |

Transcranial Magnetic Stimulation Applications in Neuropsychiatry

Mark S. George, MD; Sarah H. Lisanby, MD; Harold A. Sackeim, PhD
Arch Gen Psychiatry. 1999;56(4):300-311. doi:10.1001/archpsyc.56.4.300.
Text Size: A A A
Published online


In the 1990s, it is difficult to open a newspaper or watch television and not find someone claiming that magnets promote healing. Rarely do these claims stem from double-blind, peer-reviewed studies, making it difficult to separate the wheat from the chaff. The current fads resemble those at the end of the last century, when many were falsely touting the benefits of direct electrical and weak magnetic stimulation. Yet in the midst of this popular interest in magnetic therapy, a new neuroscience field has developed that uses powerful magnetic fields to alter brain activity—transcranial magnetic stimulation. This review examines the basic principles underlying transcranial magnetic stimulation, and describes how it differs from electrical stimulation or other uses of magnets. Initial studies in this field are critically summarized, particularly as they pertain to the pathophysiology and treatment of neuropsychiatric disorders. Transcranial magnetic stimulation is a promising new research and, perhaps, therapeutic tool, but more work remains before it can be fully integrated in psychiatry's diagnostic and therapeutic armamentarium.

Figures in this Article

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?


Place holder to copy figure label and caption
Figure 1.

Example of transcranial magnetic stimulation (TMS) application. Ziad Nahas, MD, demonstrates a TMS figure-8 coil applied over the left prefrontal cortex of Ananda Shastri, PhD. Note that the subject is awake and alert, and is wearing earplugs for safety. The electromyography machine in the lower left corner (B) is used to determine the motor threshold for dosing of stimulation intensity. Several TMS devices and coils are pictured: A, Medtronic-Dantec (Copenhagen, Denmark); C, Cadwell (Kennewick, Wash) with water-cooled figure-8 coil; D, Neotonus (Atlanta, Ga); and E, Magstim (Sheffield, England).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Structural imaging may guide transcranial magnetic stimulation (TMS) placement. A coronal magnetic resonance image of a subject where the location of the TMS coil is indicated above the left hemisphere motor area. The magnetic field produced by the TMS coil when it discharges is shown in black gauss lines drawn on the brain. Combining TMS with structural imaging may allow for exact guidance of TMS coils, as well as understanding where the TMS magnetic fields are distributed in the brain. (Image courtesy of Daryl Bohning, PhD, and colleagues, Medical University of South Carolina Functional Neuroimaging Division, Charleston.)

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Combining transcranial magnetic stimulation (TMS) with functional imaging reveals TMS neurophysiological effects. Four transverse positron emission tomography images from Kimbrell et al.122 The nose is at the top of the image, and the right image side is the left side of the brain. These are statistical difference images from 8 adults who had TMS applied at 1 Hz over the left prefrontal cortex (arrow, D) during one scan, and then sham during another. Prefrontal TMS at 1 Hz reduced regional brain activity (blue) locally and in remote areas such as the insula (C) and orbitofrontal cortex (A and B). Although TMS with current technology only directly effects superficial cortex, remote transsynaptic effects also occur.

Graphic Jump Location




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

337 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles