0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Article |

Neuroanatomic Correlates of Psychopathologic Components of Major Depressive Disorder FREE

Matthew S. Milak, MD; Ramin V. Parsey, MD, PhD; John Keilp, PhD; Maria A. Oquendo, MD; Kevin M. Malone, MD; J. John Mann, MD
[+] Author Affiliations

Author Affiliations: Departments of Psychiatry and Radiology, Columbia University, and Department of Neuroscience, New York State Psychiatric Institute, New York.


Arch Gen Psychiatry. 2005;62(4):397-408. doi:10.1001/archpsyc.62.4.397.
Text Size: A A A
Published online

Background  The Hamilton Depression Rating Scale (HDRS) is widely used to measure the severity of depression in mood disorders. Total HDRS score correlates with brain metabolism as measured by fludeoxyglucose F 18 ([18F]-FDG) positron emission tomography. The HDRS comprises distinct symptom clusters that may be associated with different patterns of regional brain glucose metabolism.

Objective  To examine associations between HDRS component psychopathologic clusters and resting glucose cerebral metabolism assessed by [18F]-FDG positron emission tomography.

Patients  We evaluated 298 drug-free patients who met the DSM-III-R criteria for major depressive disorder.

Main Outcome Measures  Five principal components were extracted from the 24-item HDRS for all subjects and ProMax rotated: psychic depression, loss of motivated behavior, psychosis, anxiety, and sleep disturbance. The [18F]-FDG scans were acquired in a subgroup of 43 drug-free patients in twelve 5-minute frames. Voxel-level correlation maps were generated with HDRS total and factor scores.

Results  Total HDRS score correlated positively with activity in a large bilateral ventral cortical and subcortical region that included limbic, thalamic, and basal ganglia structures. Distinct correlation patterns were found with the 3 individual HDRS factors. Psychic depression correlated positively with metabolism in the cingulate gyrus, thalamus, and basal ganglia. Sleep disturbance correlated positively with metabolism in limbic structures and basal ganglia. Loss of motivated behavior was negatively associated with parietal and superior frontal cortical areas.

Conclusions  Different brain regions correlate with discrete symptom components that compose the overall syndrome of major depression. Future studies should extend knowledge about specific regional networks by identifying responsible neurotransmitters related to specific psychopathologic components of mood disorders.

Figures in this Article

Major depressive episodes (MDEs) involve several psychopathologic components. Brain imaging studies128 have identified abnormalities associated with MDEs, but most have not attempted to identify brain regions related to symptom components of MDEs. Symptom components may correlate with different brain regions. If so, given the variation in psychopathologic features and their severity between episodes, even within the same individual,29 considering only global depression severity in mapping brain activity patterns in MDEs introduces noise into the results of studies.

One approach to obtaining a map of the anatomic correlates of the symptom components of MDEs is to decompose the overall depression rating scale scores into components. The internal structure of clinical psychometric scales can be explored by factor analysis. Despite progress in resolving the technical30 and conceptual3135 issues, previous factor analyses of the Hamilton Depression Rating Scale (HDRS)3654 identified 1 to 7 factors. The lack of consistent results reflects methodologic and study population differences.30,37,48 For ordered-category ratings, the polychoric correlation technique (see the “Methods” section) is an option5561 that avoids potential artifacts and yet, to the best of our knowledge, has never been applied to determine the correlation between HDRS factors and relative regional brain activity as measured by glucose uptake (rCMRglu).

To our knowledge, only 3 studies6264 have evaluated the correlation between the severity of symptom clusters obtained by factor analysis and rCMRglu63,64 or relative regional cerebral blood flow (rCBF).62 All these studies found indications of regional differences in patterns of correlation with symptom components, although 1 study63 examined only treatment effects. These studies used small, diagnostically heterogeneous samples, limiting the confidence in the factors derived.

To overcome the limitations of the previous studies, we conducted factor analysis of depressive symptom clusters in 298 medication-free patients with a current DSM-III-R MDE using a polychoric correlation matrix of 24-item HDRS (HDRS-24)42,65 scores that generated 5 nonorthogonal symptom factors. We then examined the relationships between these factors and the HDRS-24 total score at a voxel level to rCMRglu measured by fludeoxyglucose F 18 ([18F]-FDG) and positron emission tomography (PET) in 43 of the 298 patients.

PATIENTS

Medication-free patients with a current MDE in the context of major depressive disorder, diagnosed based on the Structured Clinical Interview for DSM-III-R, Patient Version,66 and with a score greater than 16 on the 17-item HDRS41,42,65 were entered into the study after giving written informed consent as approved by the Columbia University and New York State Psychiatric Institute institutional review boards. Demographic data and psychiatric, medical, and family histories were recorded on the Columbia Baseline Demographic Form. Patients were administered the HDRS within 24 hours of undergoing PET.

Data are reported as mean ± SD. Patients in the PET analysis had an age of 38.4 ± 13.2 years and 15.6 ± 2.9 years of education. Age at the first episode of major depression was 23.8 ± 14.7 years. The cohort comprised 61% women and had 4.2 ± 3.5 lifetime episodes of major depression. The Global Assessment of Functioning Scale score for the current episode was 43.6 ± 10.2. The HDRS-24 total and factor scores for patients in the PET analysis were as follows: HDRS-24 total score, 29.7 ± 6.2 (scale range, 0-74); factor 1, 12.5 ± 3.3 (scale range, 0-28); factor 2, 5.1 ± 2.3 (scale range, 0-10); factor 3, 1.6 ± 1.7 (scale range, 0-12); factor 4, 5.3 ± 2.1 (scale range, 0-14); and factor 5, 2.8 ± 1.7 (scale range, 0-6).

Patients were medication free for a minimum of 14 days except for benzodiazepines and 1 patient receiving buspirone hydrochloride (6 weeks in the case of fluoxetine hydrochloride and 1 month in the case of oral antipsychotic agents). The median number of days not taking each type of medication before PET was as follows: anticonvulsants and mood stabilizers1 (n = 5), 19 (range, 13-34 days); antidepressant, other2 (n = 7), 43 (range, 7-13 days); benzodiazepines (n = 17), 25 (range, 9-956 days); selective serotonin reuptake inhibitor, non-fluoxetine3 (n = 8), 26.5 (range, 9-461 days); and fluoxetine (n = 7), 64, (range, 41-984 days). Eighteen patients had no previous medication use. The following medications were taken by 1 patient each: lithium carbonate (terminated 43 days before PET), the monoamine oxidase inhibitor phenelzine sulfate (41 days), and levothyroxine sodium (16 days). The following medications were taken by 2 patients each: the antiparkinsonian drugs bromocriptine and pergolide mesylate (terminated 101 and 29 days before PET), risperdone (41 and 29 days), the typical antipsychotic agents haloperidol and thioridazine (44 and 30 days), the stimulants dextroamphetamine sulfate and methylphenidate hydrochloride (19 and 16 days), and electroconvulsive therapy (56 and 57 days). Three patients each took the following medications: buspirone hydrochloride (terminated 9, 17, and 44 days before PET), the tricyclic antidepressants clomipramine hydrochloride (n = 2) and nortriptyline hydrochloride (n = 1) (19, 82, and 956 days),1 divalproex sodium and carbamazepine,2 trazodone hydrochloride, venlafaxine hydrochloride, mirtazapine, nefazodone hydrochloride, bupropion hydrochloride,3 paroxetine, and sertraline hydrochloride.

Patients were free of medical illnesses based on history, physical examination findings, and laboratory test results. Pregnant women were excluded. Premenopausal women were studied within 5 days of the onset of menses.

FACTOR ANALYSIS

The factor analysis was performed on the polychoric correlation matrix of the HDRS-24 scores. For completeness of content coverage of components of MDEs, we used HDRS-24 scores for the factor analysis. The polychoric correlation (for ordered-category ratings) is preferable to correlation or covariance matrices for the measurement of correlations between psychometric scale items5559 because it is theoretically invariant across changes in the number or “width” of rating categories. Otherwise, owing to the truncated range of scores (inclusion criteria of the 17-item HDRS total score of ≥17) and the stepwise nature of the subitem scores (each item ordered into a few categories and scored from zero to a single digit upper limit, which varies from item to item), the standard factor analysis of a correlation matrix or covariance matrix can generate false associations between items. We previously used this method in an analysis of the Beck Suicide Intent Scale.67 However, we also ran our factor analysis using standard Pearson correlations and the raw data, and we obtained the same 5 factors that we obtained with the polychoric matrix (all items loaded on the same factors). Because we did not weight factor scores by their loadings, the Pearson correlation matrix produced identical factor scores. Correlations with 18F-FDG uptake remained unchanged.

Furthermore, we used a nonorthogonal (ProMax) rotation. Applying a mathematical rotation to the axes can greatly simplify the relationships between factors (axes) and variables (HDRS item scores). A multidimensional factor plot may have multiple distinct clusters, which are isolated from each other but vectorially less than orthogonal to each other. In such a case, orthogonal rotation of the axes would not necessarily stop variables from loading equally on several axes or factors. A nonorthogonal rotation of the axes is necessary to find a useful factor solution to variables that tend to form clusters that are not orthogonal to each other.

The same factor structure of depressive symptoms was found in the subsample that underwent PET (n = 43) and the larger sample (n = 298). The 2 groups also did not differ in HDRS total or factor scores or demographic variables except that the PET group was more educated by a mean of 1.5 years (t60.76 = –3.13; P = .003).

PET STUDIES

As reported in previous publications,12,6870 a bolus injection of approximately 10 mCi of 18F-FDG was administered intravenously. Patients gazed at crosshairs in a room with dimmed lighting during the first 15 minutes of the 18F-FDG distribution phase and then rested quietly for another 15 minutes before moving to the scanner (ECAT EXACT 47; Siemens Corp, New York, NY), where they were supine for 10 minutes before undergoing PET.

IMAGE ANALYSIS

As reported elsewhere,12,6870 the twelve 5-minute PET frames were aligned using automated image registration71 and then summed. Statistical analysis was performed using Statistical Parametric Mapping (SPM99; Institute of Neurology, University College of London, London, England) implemented in Matlab 5 (The Mathworks Inc, Natick, Mass).72,73 To determine which regions correlate with HDRS-24 total and factor scores, a voxel-level correlation analysis was performed using the general linear model with rCMRglu. Height threshold was set a priori to P < .01, and the extent threshold was set to P < .05 after correction for multiple comparisons by Statistical Parametric Mapping. Stereotaxic coordinates reported are based on Talairach atlas74 coordinates, converted from Montreal Neurological Institute coordinates.7577

FACTOR ANALYSIS

Factor analysis of the HDRS-24 on the population of 298 depressed patients yielded a 5-factor solution (Table 1). When factors are correlated owing to nonorthogonal rotation, sums of square loadings cannot be added to obtain a total cumulative variance. However, from the eigen values, it can be determined that the variance in HDRS-24 scores explained by the individual factors ranges from 9.4% to 13.1%. For descriptive statistics on the subscale (or factor) scores, see the “Methods” section.

Table Graphic Jump LocationTable 1. Factor Structure of the Hamilton Depression Rating Scale (HDRS)
rCMRglu CORRELATION WITH HDRS SCORES
HDRS-24 Total Score

There are positive correlations between rCMRglu and the HDRS-24 total score in multiple ventral brain regions (Figure 1 and Table 2). These structures form a single contiguous brain region (6960 voxels) in which rCMRglu shows significant (cluster level P < .001, corrected for multiple comparisons) positive correlation (partial R = 0.551; global maximum at Talairach coordinates 10 13 –12) with HDRS-24 total scores. These brain regions involve the bilateral mesiotemporal cortex, parts of the ventral subgenual basal forebrain, and most of the thalamus, hypothalamus, ventral striatum, and midbrain. The HDRS-24 total score shows no significant negative correlation with any brain region.

Place holder to copy figure label and caption
Figure 1.

Regions shown as a volume in the glass brain. Maps of correlations of relative regional glucose metabolic rate in human brain in major depression, with severity of depression measured by the 24-item Hamilton Depression Rating Scale. Upper left, overall depression (total score). Upper right, Factor 1: psychic depression. Lower left, Factor 2: loss of motivated behavior. Lower right, Factor 5: sleep disturbance.

Graphic Jump Location
Table Graphic Jump LocationTable 2. Regions in Which Relative Cerebral Glucose Metabolism Shows Significant Correlations With Hamilton Depression Rating Scale (HDRS) Total and Factor Scores*
Factor 1: Psychic Depression

Factor 1 correlates positively with a large central, ventral cortical and subcortical area that extends into the left temporal lobe (Figure 1, Figure 2, and Table 2). These structures form 3 clusters (3557, 3793, and 1561 voxels) in which rCMRglu shows significant (P ≤ .001, .001, and .03) positive correlations (partial R = 0.6, 0.5, and 0.6 for maxima at Talairach coordinates −38 –45 –11, 10 –17 8, and –12 –23 40) with factor 1. This area includes most of the dorsal posterior cingulate, thalamus, ventral striatum, hypothalamus, subgenual anterior cingulate, and subgenual basal forebrain. Factor 1 shows no significant negative correlation with rCMRglu.

Place holder to copy figure label and caption
Figure 2.

A map of correlations of relative regional glucose metabolic rate in human brain in major depression, with severity of depression measured by factors 1, 2, and 5 of the 24-item Hamilton Depression Rating Scale. The color scales indicate the strength (t score) of the correlation (t score maps are overlaid on a series of transaxial slices [2 mm apart] of a coregistered magnetic resonance image from 38 mm below to 72 mm above the line connecting the anterior and posterior commissures). Red to orange regions are uniquely positively correlated with factor 1, green to light green regions correlate with factors 1 and 5, blue to light blue regions are uniquely negatively correlated with factor 2, and red to light red regions are uniquely positively correlated with factor 5, the sleep disturbance factor.

Graphic Jump Location
Factor 2: Loss of Motivated Behavior

Factor 2, in contrast to the total HDRS-24 and factor 1, shows only a significant negative correlation with largely dorsal cortical regions. These structures form 3 clusters (2873, 3765, and 3172 voxels) in which rCMRglu shows a significant (P ≤ .001) negative correlation (partial R = 0.6, 0.6, and 0.5 at 42 –70 33, –22 –70 33, and –30 23 34 Talairach coordinates) with factor 2. Factor 2 is negatively correlated with an extensive network of dorsal cortical regions (Figure 1 and Figure 2 and Table 2), including the dorsolateral prefrontal cortex (PFC), dorsal parietal cortex, and dorsal temporal association cortices.

Factors 3 and 4: Psychosis and Anxiety

Factors 3 and 4 show no significant positive or negative correlation with rCMRglu in any brain regions.

Factor 5: Sleep Disturbance

Factor 5 correlates positively with rCMRglu in a series of regions almost encircling the area associated with factor 1 (Figure 1 and Figure 2 and Table 2). These structures form 2 clusters (1582 and 5224 voxels) in which rCMRglu shows a significant (P ≤. 003) positive correlation (partial R = 0.6 and 0.5 at 42 –20 32 and –24 –25 14 Talairach coordinates) with factor 5. The sleep disturbance factor shows no significant negative correlation with any brain region.

We found no correlations between HDRS total or factor scores and age, sex, or any other demographic variables reported in the “Methods” section. Nevertheless, for completeness we repeated the entire analysis controlling for age and sex. Despite the decreased statistical power, and correcting for multiple comparisons, the correlations between rCMRglu and the depression severity scores remained statistically significant in all but 1 case. Factor 2 lost significance when including age in the statistical design.

To our knowledge, this is the first study that maps the neuroanatomic correlates of the symptom components of major depression based on factor analysis of the polychoric correlation matrix (instead of the correlation matrix or covariance matrix that is used routinely) of the HDRS-24. We found distinct correlation maps of brain activity for 3 of the 5 factors. There is minimal overlap in the parametric maps of the 3 factors such that their brain distributions are strikingly distinct. This is best illustrated in Figure 2, where the panel shows the area unique to the corresponding factor separately from the area that overlaps with other factors. Two factors did not reveal any statistically significant correlations with specific brain regions in this population.

OVERALL DEPRESSION SEVERITY AND RELATIVE REGIONAL BRAIN ACTIVITY

Overall depression severity shows a positive correlation with rCMRglu in a large contiguous volume that includes parts of the limbic system, the ventromedial prefrontal and temporal cortices, parts of the inferior parietal cortex, the thalamus, the ventral aspects of the basal ganglia, and the midbrain. No negative correlation of overall depression score with rCMRglu was found in any brain region. Like our findings, others have found overall severity of depression to be positively correlated with rCMRglu or rCBF in the ventral brain regions, such as the bilateral medial frontal and right anterior cingulate,78 right dorsolateral78 and anterolateral79 PFCs and in the hippocampus,80 cingulate, and other paralimbic areas.81 In addition, positive correlations are reported in the left anterior temporal, left dorsolateral prefrontal, right prefrontal, and right posterior temporal cortices.82 Some studies report no correlation between overall severity of depression and central nervous system activity estimated by either rCBF83,84 or rCMRglu.85,86

There is less clear agreement among studies that find negative correlations between global depression severity and regional brain activity in terms of the specific regions involved. For example, overall severity of depression is reported to be negatively correlated with rCMRglu or rCBF in whole slice,87 right cingulate cortex, bilateral PFC, insula, basal ganglia, and temporoparietal cortex (right > left)14; globally,88,89 inferior anterior cingulate cortex,90 anterofrontal and left prefrontal regions91; widespread anterior,92 frontal, central, superior temporal, and anterior parietal regions21; ventral anterior cingulate; and orbitofrontal cortex with the caudate nuclei in an acute tryptophan depletion–induced relapse paradigm.93 Similarly, low gray matter rCBF was reported to correlate with severity of depression as measured by the HDRS.89 Some regions showing correlation with overall severity scores in that study89 were identified in our study as correlating with specific clinical components of the HDRS. One explanation for the inconsistency in reported findings is that the diversity of clinical manifestations of MDE between and within patients29 may obscure associations of global severity with specific brain regions in functional imaging studies. Psychopathologic item clusters correlate differently with activity of specific brain regions such that combining factor scores from different subjects may obscure important associations between brain regions and symptom severity of depression.

Normalization of higher rCMRglu in the limbic system associated with improvement in MDEs63 after treatment, and increases in limbic-paralimbic rCBF (subgenual cingulate and anterior insula) and decreases in neocortical rCBF in other regions (right dorsolateral prefrontal and inferior parietal)94 indicate partial normalization with recovery from depression, namely, limbic metabolic decreases and neocortical metabolism increases. A significant inverse correlation between subgenual cingulate and right dorsolateral prefrontal activity is demonstrated in the state of induced sadness and recovery.94

Caution should be exercised in interpreting negative findings in this study. The fact that this study did not find regions in the brain that negatively correlate with overall depression does not mean that such regions do not exist. The composition of the group in terms of severity of factor 2, which has negative correlations with large bilateral parts of the PFC and parietotemporal cortex, may be part of the reason for the absence of a global severity negative correlation.

CORRELATIONS WITH DEPRESSIVE PSYCHOPATHOLOGIC COMPONENTS
Factor 1: Psychic Depression

This factor, which includes items that reflect depressed mood, depressive cognitions, and suicidality, correlates positively with a large ventral and midline area. Subjective severity of negative cognitions in major depression is reported by other researchers64 to also correlate with metabolism bilaterally in ventral brain regions. Minor differences in involved brain regions compared with our study may be attributable to differences in the clinical measures used. Although the HDRS-derived factors in a treatment study63 differ somewhat from ours, there is convergence in the results because improvement in symptom severity was associated with a decrease in metabolic activity in ventral structures, a normalization of the findings we made in the depressed state.

Factor 2: Loss of Motivated Behavior

Factor 2 is negatively correlated with an extensive network of dorsal cortical regions (Figure 1 and Figure 2 and Table 2). Consistent with this finding, psychomotor change–anhedonia is reported to correlate robustly with lower normalized rCMRglu in the right dorsolateral prefrontal and temporal cortices,64 and lower normalized rCBF in the dorsolateral anteroposterior PFC correlates with psychomotor slowing, poverty of speech, and cognitive impairment.62,9598 On the other hand, psychomotor retardation–anhedonia correlated with lower absolute metabolism in the right insula, claustrum, anteroventral caudate/putamen, and temporal cortex and with higher normalized metabolism in anterior cingulate in another study.64 Consistent with our results, rCMRglu in the left anterolateral and dorsolateral PFC increases proportionately with antidepressant treatment response.63,79

We found that loss of motivation in depression was also associated with changes in the parietal, temporal, and frontal cortices. Some studies99103 have noted associations in planning or other measures of motivation to parietal and frontal cortex activity. In addition, one model104 has postulated that depression involves the frontal, limbic, and subcortical regions, with the subcortical regions playing a primarily gating role. Our findings that multiple regions are involved in this dimension of depression are in keeping with such a model and are further supported by studies that suggest specific deficits in the parietal and frontal cortices that are associated with motivation or its inverse, apathy.102

Although in animal105 and human106,107 studies, reward-related motivation has been linked to the striatum and to limbic projections from the midbrain tegmentum in paradigms using tasks in which some operantly conditioned behavior is coupled with the anticipation of instant gratification, it is not surprising that the metabolic abnormality of an extensive network of frontal, parietal, and temporal association cortices correlates with the severity of the loss of motivated behavior. This is in keeping with the model that dopaminergic input to the striatum gates the glutamatergic sensorimotor and incentive motivational input signals to the striatum,105 and it is also supported by studies of brain injuries in which reduced goal-directed behavior due to lack of motivation (apathy) has been found to be associated with specific cognitive deficits related to frontal cortical dysfunction.102

Factor 3: Psychosis

Factor 3 shows no significant associations with rCMRglu in the present study. These items are the least cohesive group of items, forming a cluster in our factor analysis that seems to encompass a dimension that is related to psychosis. Distinct patterns of central nervous system correlates of various measures of formal thought disorder and other psychotic symptoms are extensively reviewed108 in the context of schizophrenia. The severity of psychosis was low in our sample, providing minimal statistical power to find meaningful correlations.

Factor 4: Anxiety

We found no correlations with this factor, in contrast to other voxel-based correlational analyses that derived anxiety factors from the Beck Depression Inventory or other scales.62,63 However, most region of interest–based studies do not agree on correlations with anxiety severity. Positive correlations are reported with 1 brainstem region of interest between rCBF and subjective anxiety scores.109 A “probable association” was reported81 between an increase in the anxious-depression factor and reduced frontal neocortical perfusion. No clear association was reported110 between subjective or physiologic variables and changes in rCBF as a consequence of anxiety induction. Based on an anxiety induction study, it has been suggested111 “that some of the temporal cortex rCBF activation peaks previously reported in humans in association with drug- and non–drug-induced anxiety, as well as the increase in rCBF in the claustrum-insular-amygdala region, may be of vascular and/or muscular origin” instead of a reflection of central nervous system activity. On the other hand, there are rCMRglu112 and rCBF113 studies that show disparate but unique patterns of correlation between their measures of anxiety and tracer uptake. Another possible explanation for the disparate findings, besides differences in patient populations and definitions of anxiety symptoms, may lie in the uncoupling of metabolism and blood flow in many brain regions.114 This double-isotope 18F-FDG and technetium Tc 99m–hexamethylpropylene amine oxime single-photon emission computed tomography technique indicates that a dynamic coupling between rCBF and rCMRglu exists only in a few distinct brain regions even in healthy individuals, and depressive illness may have a further uncoupling effect on this correlation in some brain regions.

Factor 5: Sleep Disturbance

Factor 5 shows positive correlations with a series of cortical and subcortical structures in our awake patients. Abnormalities in brain activity in the limbic and paralimbic structures that overlap with regions we find to correlate with the depression sleep disturbance factor are reported to be more active in relation to sleep disturbances found in major depression11 and to decreases in activity after sleep deprivation treatment of major depression.115

These results are also consistent with findings from human functional neuroimaging studies of sleep (for a review see Maquet116). It is currently assumed that for the successful initiation or maintenance of physiologic phases of normal sleep, the deactivation of these areas is important. Consequently, it is not surprising that insomnia (a lack of normal sleep) may positively correlate with the degree to which some of these areas are overactivated and, therefore, perhaps fail to deactivate and thereby interfere with the development of normal sleep architecture. In contrast, a dissenting study63 found that improvement in sleep disturbance was negatively associated with change in right anterior medial temporal, left ventral frontal, and right ventral frontal metabolism.

IMPLICATIONS FOR THE NEURAL CIRCUITRY OF MAJOR DEPRESSION

The evolution of emotion likely stems from the absolute need to identify and appraise threatening and rewarding stimuli in the environment and form quick and appropriate goal-directed behavior in response.117,118 This process has been divided into identification and appraisal of the emotional significance of the stimulus and the production of an affective state, including the automatic physiologic and somatomotor responses to the stimuli.119121 Phillips et al122 propose a third process, the effortful regulation of the affective state and behavioral responses, which in turn involves the inhibition or modulation of the first 2 processes so that the affective state and behavior produced are contextually appropriate. The neural basis of these 3 processes have been extensively reviewed recently.122,123 Briefly, amygdala, which has extensive interconnections with insula, together with the ventromedial PFC, thalamus, hypothalamus, and periaqueductal gray, is thought to form part of a network that participates in perceiving aversive stimuli and organizing autonomic responses to them. Numerous lines of evidence,124,125 human stimulation,126 human central nervous system lesions,127131 and functional brain imaging studies132143 support the involvement of these structures in the perception of aversive stimuli124,125 or the identification of expressions of fear,128130,144 disgust,76,131,136,145,146 sadness,139 and happiness134 and in the attention147 to emotionally charged information.

Findings from animal and human studies suggest that these structures participate not only in the perception and identification of the emotional salience of stimuli but also in the second process mentioned in the previous paragraph, that is, the production of affective states and emotional behavior. Animal studies implicate the ventral tegmental area, nucleus accumbens,148,149 putamen, and caudate125 in reward processing; the amygdala150155 in the production of various affective states; the subgenual anterior cingulate156160 in autonomic and conditioned responses to emotionally salient stimuli; and the subgenual ventral PFC161163 in the evaluation of the reward value of stimuli and the regulation of autonomic and endocrine responses to fear.164 Human lesion165168 and stimulation169,170 studies support the involvement of these structures (the amygdala,165,166,169 subgenual anterior cingulate,167,168,170 and ventromedial PFC171174) in the production of affective states and emotional behavior in human. Findings from human functional brain imaging studies support the involvement of these structures (found in the present study to correlate with depression severity) in the production of affective states and emotional behavior (the ventral striatum,175179 amygdala,180184 subgenual anterior cingulate,94,185,186 orbitofrontal/ventromedial PFC,186193 and dorsal anterior cingulate194198). Parts of the dorsolateral PFC, found to have a negative correlation with factor 2 in our study (which included items such as work and activities and loss of motivated behavior), have been implicated in the performance of cognitive tasks in which attention needs to be directed away from the affective charge associated with the task.199

These findings suggest that regions found to correlate with one or another aspect of depression severity in our study are involved in the identification and appraisal of the emotional significance of the stimulus and in the production of affective states, including the automatic physiologic and somatomotor responses to the emotional content of stimuli.

On the other hand, there is a lack of correlation in this study with regions such as the dorsal anterior and rostral anterior cingulate, which are thought to be associated with attention to subjective emotional states and experiences,200 and with regions such as the paracingulate gyrus, which has been associated with representation of mental states of self201 and self-reflecting thoughts.202 We suggest that this has to do with the fact that the HDRS is a clinician-rated instrument. Consequently, it is likely that the severity of depression as scored by clinicians, who tend to give more credence to objective or behavioral and neurovegetative signs of depression, is more likely to correlate with the activities of structures that are involved in the perception and regulation of unconscious and autonomic, physiologic, and somatomotor responses to the affective contents of stimuli. We hypothesize that a self-rated scale, such as the Beck Depression Inventory, would be more likely to correlate with structures such as the anterior cingulate that are thought to be involved in the effortful regulation of affective states and reflective awareness of affect (the third process suggested by Phillips et al122).

We find that different brain regions contribute to discrete psychopathologic components that compose the overall syndrome of major depressive disorder. There is a correlation between the HDRS total score and the component scores. Therefore, although the brain regions that correlate with different factors are largely different, it is not surprising that there still is some overlap between the factors in terms of involved brain regions. Global severity correlates with brain regions that overlap with most of the factors.

The overall pattern is striking in that the positive correlations with aspects of depression severity are mostly subcortical ventral, ventral prefrontal, and limbic structures and the negative correlations are mostly or almost exclusively dorsal cortical; this overall pattern is consistent with the literature.94

Ultimately, understanding the functional neuroanatomy of major depressive disorder will depend on understanding the unique association of specific regional networks and neurotransmitter systems to specific symptom components rather than to an overall composite severity score. The widespread correlation of depressive symptom clusters with rCMRglu reported herein is most consistent with abnormalities in the distributed neuromodulatory role of monoaminergic neurotransmitter systems. Correlating regional brain abnormalities in catecholaminergic, serotonergic, and dopaminergic synaptic transmission with symptom components of depression and neuropsychologic deficits of depression may provide further insights into the neurobiologic processes of major depression.

Correspondence: Matthew S. Milak, MD, Departments of Psychiatry and Radiology, Columbia University, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Dr, Mail Unit 42, New York, NY 10032 (mm2354@columbia.edu).

Submitted for Publication: October 8, 2003; final revision received September 13, 2004; accepted September 29, 2004.

Funding/Support: This study was supported in part by grants MH40695, MH62185, and RR00645 from the National Institutes of Health, Bethesda, Md, and by the National Alliance for Research on Schizophrenia and Depression, Great Neck, NY.

Previous Presentation: This study was presented in part at the Annual Meeting of the Organization for Human Brain Mapping; June 19, 2003; New York, NY.

Acknowledgment: We thank our imaging core for analyzing the images, our clinical evaluation core for recruiting the patients and performing the clinical ratings, and Shuhua Li, PhD, for his assistance with the polychoric statistics.

Drevets  WC Neuroimaging studies of mood disorders. Biol Psychiatry 2000;48813- 829
PubMed Link to Article
Andreasen  NCArndt  SCizadlo  TO'Leary  DSWatkins  GLPonto  LLHichwa  RD Sample size and statistical power in [15O]H2O studies of human cognition. J Cereb Blood Flow Metab 1996;16804- 816
PubMed Link to Article
Baxter  LR PET studies of cerebral function in major depression and obsessive-compulsive disorder: the emerging prefrontal cortex consensus. Ann Clin Psychiatry 1991;3103- 109
Link to Article
Baxter  LR  JrPhelps  MEMazziotta  JCSchwartz  JMGerner  RHSelin  CESumida  RM Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 1985;42441- 447
PubMed Link to Article
Buchsbaum  MSWu  JSiegel  BVHackett  ETrenary  MAbel  LReynolds  C Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 1997;4115- 22
PubMed Link to Article
Daly  JJPrudic  JDevanand  DPNobler  MSLisanby  SHPeyser  SRoose  SPSackeim  HA ECT in bipolar and unipolar depression: differences in speed of response. Bipolar Disord 2001;395- 104
PubMed Link to Article
Dolan  RJBench  CJBrown  RGScott  LCFriston  KJFrackowiak  RS Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J Neurol Neurosurg Psychiatry 1992;55768- 773
PubMed Link to Article
Drevets  WCVideen  TOPrice  JLPreskorn  SHCarmichael  STRaichle  ME A functional anatomical study of unipolar depression. J Neurosci 1992;123628- 3641
PubMed
Guze  BHBaxter  LR  JrSchwartz  JMSzuba  MPMazziotta  JCPhelps  ME Changes in glucose metabolism in dementia of the Alzheimer type compared with depression: a preliminary report. Psychiatry Res 1991;40195- 202
PubMed Link to Article
Hagman  JOBuchsbaum  MSWu  JCRao  SJReynolds  CABlinder  BJ Comparison of regional brain metabolism in bulimia nervosa and affective disorder assessed with positron emission tomography. J Affect Disord 1990;19153- 162
PubMed Link to Article
Ho  APGillin  JCBuchsbaum  MSWu  JCAbel  LBunney  WE  Jr Brain glucose metabolism during non-rapid eye movement sleep in major depression: a positron emission tomography study. Arch Gen Psychiatry 1996;53645- 652
PubMed Link to Article
Kegeles  LSMalone  KMSlifstein  MEllis  SPXanthopoulos  EKeilp  JGCampbell  COquendo  MVan Heertum  RLMann  JJ Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry 2003;16076- 82
PubMed Link to Article
Ketter  TAKimbrell  TAGeorge  MSWillis  MWBenson  BEDanielson  AFrye  MAHerscovitch  PPost  RM Baseline cerebral hypermetabolism associated with carbamazepine response, and hypometabolism with nimodipine response in mood disorders. Biol Psychiatry 1999;461364- 1374
PubMed Link to Article
Kimbrell  TAKetter  TAGeorge  MSLittle  JTBenson  BEWillis  MWHerscovitch  PPost  RM Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry 2002;51237- 252
PubMed Link to Article
Kling  ASMetter  EJRiege  WHKuhl  DE Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am J Psychiatry 1986;143175- 180
PubMed
Kumar  ANewberg  AAlavi  ABerlin  JSmith  RReivich  M Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study. Proc Natl Acad Sci U S A 1993;907019- 7023
PubMed Link to Article
Pawlik  GBeil  CHebold  IHerholz  KWienhard  KHeiss  WD Positron emission tomography in depression research: principles–results–perspectives. Psychopathology 1986;19 ((suppl 2)) 85- 93
PubMed Link to Article
Post  RMDeLisi  LEHolcomb  HHUhde  TWCohen  RBuchsbaum  MS Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiatry 1987;22545- 553
PubMed Link to Article
Ring  HABench  CJTrimble  MRBrooks  DJFrackowiak  RSDolan  RJ Depression in Parkinson's disease: a positron emission study. Br J Psychiatry 1994;165333- 339
PubMed Link to Article
Rubin  ESackeim  HAProhovnik  IMoeller  JRSchnur  DBMukherjee  S Regional cerebral blood flow in mood disorders, IV: comparison of mania and depression. Psychiatry Res 1995;611- 10
PubMed Link to Article
Sackeim  HAProhovnik  IMoeller  JRBrown  RPApter  SPrudic  JDevanand  DPMukherjee  S Regional cerebral blood flow in mood disorders, I: comparison of major depressives and normal controls at rest. Arch Gen Psychiatry 1990;4760- 70
PubMed Link to Article
Silfverskiold  PRisberg  J Regional cerebral blood flow in depression and mania. Arch Gen Psychiatry 1989;46253- 259
PubMed Link to Article
Stoll  ALRenshaw  PFYurgelun-Todd  DACohen  BM Neuroimaging in bipolar disorder: what have we learned? Biol Psychiatry 2000;48505- 517[published correction appears in Biol Psychiatry. 2001;49:80]
PubMed Link to Article
Tiemeier  HBakker  SLHofman  AKoudstaal  PJBreteler  MM Cerebral haemodynamics and depression in the elderly. J Neurol Neurosurg Psychiatry 2002;7334- 39
PubMed Link to Article
Uytdenhoef  PPortelange  PJacquy  JCharles  GLinkowski  PMendlewicz  J Regional cerebral blood flow and lateralized hemispheric dysfunction in depression. Br J Psychiatry 1983;143128- 132
PubMed Link to Article
Videbech  P PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 2000;10111- 20
PubMed Link to Article
Videbech  PRavnkilde  BPedersen  AREgander  ALandbo  BRasmussen  NAAndersen  FStodkilde-Jorgensen  HGjedde  ARosenberg  R The Danish PET/depression project: PET findings in patients with major depression. Psychol Med 2001;311147- 1158
PubMed
Wu  JCBuchsbaum  MSJohnson  JCHershey  TGWagner  EATeng  CLottenberg  S Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. J Affect Disord 1993;2815- 25
PubMed Link to Article
Oquendo  MABarrera  AEllis  SPLi  SBurke  AKGrunebaum  MEndicott  JMann  JJ Instability of symptoms in recurrent major depression: a prospective study. Am J Psychiatry 2004;161255- 261
PubMed Link to Article
Boyle  GJ Self-report measures of depression: some psychometric considerations. Br J Clin Psychol 1985;2445- 59
PubMed Link to Article
Katz  MMKoslow  SHBerman  NSecunda  SMaas  JWCasper  RKocsis  JStokes  P A multi-vantaged approach to measurement of behavioral and affect states for clinical and psychobiological research. Psychol Rep 1984;55619- 671
PubMed Link to Article
Tanaka  JHuba  G Confirmatory hierarchical factor analyses of psychological distress measures. J Pers Soc Psychol 1984;46621- 635
Link to Article
Byrne  BMBaron  P The Beck Depression Inventory: testing and cross-validating a hierarchical factor structure for nonclinical adolescents. Measure Eval Couns Dev 1993;26164- 178
Byrne  BMBaron  PLarsson  BMelin  L The Beck Depression Inventory: testing and cross-validating a second-order factorial structure for Swedish nonclinical adolescents. Behav Res Ther 1995;33345- 356
PubMed Link to Article
McConville  CCooper  C The structure of moods. Pers Individ Dif 1992;13909- 919
Link to Article
Cleary  PGuy  W Factor analysis of the Hamilton Depression Scale. Drugs Exp Clin Res 1977;1115- 120
Gullion  CMRush  AJ Toward a generalizable model of symptoms in major depressive disorder. Biol Psychiatry 1998;44959- 972
PubMed Link to Article
Steer  RABeck  ATRiskind  JHBrown  G Relationships between the Beck Depression Inventory and the Hamilton Psychiatric Rating Scale for Depression in depressed outpatients. J Psychopathol Behav Assess 1987;9327- 339
Link to Article
Weckowicz  TECropley  AJMuir  W An attempt to replicate the results of a factor analytic study in depressed patients. J Clin Psychol 1971;2730- 31
PubMed Link to Article
Gibbons  RDClark  DCKupfer  DJ Exactly what does the Hamilton Depression Rating Scale measure? J Psychiatr Res 1993;27259- 273
PubMed Link to Article
Hamilton  M Comparison of factors by Ahmavaara's method. Br J Math Stat Psychol 1967;20107- 110
PubMed Link to Article
Hamilton  M Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 1967;6278- 296
PubMed Link to Article
O'Brien  KPGlaudin  V Factorial structure and factor reliability of the Hamilton Rating Scale for Depression. Acta Psychiatr Scand 1988;78113- 120
PubMed Link to Article
Rhoades  HMOverall  JE The Hamilton Depression Scale: factor scoring and profile classification. Psychopharmacol Bull 1983;1991- 96
Mowbray  RM The Hamilton Rating Scale for depression: a factor analysis. Psychol Med 1972;2272- 280
PubMed Link to Article
Faravelli  CAlbanesi  GPoli  E Assessment of depression: a comparison of rating scales. J Affect Disord 1986;11245- 253
PubMed Link to Article
Ramos-Brieva  JACordero-Villafafila  A A new validation of the Hamilton Rating Scale for Depression. J Psychiatr Res 1988;2221- 28
PubMed Link to Article
Pancheri  PPicardi  APasquini  MGaetano  PBiondi  M Psychopathological dimensions of depression: a factor study of the 17-item Hamilton Depression Rating Scale in unipolar depressed outpatients. J Affect Disord 2002;6841- 47
PubMed Link to Article
Marcos  TSalamero  M Factor study of the Hamilton Rating Scale for Depression and the Bech Melancholia Scale. Acta Psychiatr Scand 1990;82178- 181
PubMed Link to Article
Fleck  MPPoirier-Littre  MFGuelfi  JDBourdel  MCLoo  H Factorial structure of the 17-item Hamilton Depression Rating Scale. Acta Psychiatr Scand 1995;92168- 172
PubMed Link to Article
Bech  PStage  KBNair  NPLarsen  JKKragh-Sorensen  PGjerris  A The Major Depression Rating Scale (MDS): inter-rater reliability and validity across different settings in randomized moclobemide trials. J Affect Disord 1997;4239- 48
PubMed Link to Article
Benazzi  F A 10-item Hamilton Depression Rating Scale to measure major depressive episode severity in outpatients. Int J Geriatr Psychiatry 1998;13570- 571
PubMed Link to Article
Kivela  SLPahkala  K Factor structure of the Hamilton Rating Scale for Depression among depressed elderly Finns. Z Psychol Z Angew Psychol 1988;196389- 399
PubMed
Onega  LLAbraham  IL Factor structure of the Hamilton Rating Scale for Depression in a cohort of community-dwelling elderly. Int J Geriatr Psychiatry 1997;12760- 764
PubMed Link to Article
Grayson  DA Common factor models of validity and reliability for use with ordinal data in k x k tables. Br J Math Stat Psychol 2001;54347- 365
PubMed Link to Article
Goldstein  RBPrescott  CAKendler  KS Genetic and environmental factors in conduct problems and adult antisocial behavior among adult female twins. J Nerv Ment Dis 2001;189201- 209
PubMed Link to Article
Hripcsak  GHeitjan  DF Measuring agreement in medical informatics reliability studies. J Biomed Inform 2002;3599- 110
PubMed Link to Article
Holland  LAZolondek  SCAbel  GGJordan  ADBecker  JV Psychometric analysis of the Sexual Interest Cardsort Questionnaire. Sex Abuse 2000;12107- 122
PubMed
Kendler  KSJacobson  KCMyers  JPrescott  CA Sex differences in genetic and environmental risk factors for irrational fears and phobias. Psychol Med 2002;32209- 217
PubMed Link to Article
McCallum  JMackinnon  ASimons  LSimons  J Measurement properties of the Center for Epidemiological Studies Depression Scale: an Australian community study of aged persons. J Gerontol B Psychol Sci Soc Sci 1995;50S182- S189
PubMed Link to Article
Gillespie  NKirk  KMHeath  ACMartin  NGHickie  I Somatic distress as a distinct psychological dimension. Soc Psychiatry Psychiatr Epidemiol 1999;34451- 458
PubMed Link to Article
Bench  CJFriston  KJBrown  RGFrackowiak  RSDolan  RJ Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 1993;23579- 590
PubMed Link to Article
Brody  ALSaxena  SMandelkern  MAFairbanks  LAHo  MLBaxter  LR Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry 2001;50171- 178
PubMed Link to Article
Dunn  RTKimbrell  TAKetter  TAFrye  MAWillis  MWLuckenbaugh  DAPost  RM Principal components of the Beck Depression Inventory and regional cerebral metabolism in unipolar and bipolar depression. Biol Psychiatry 2002;51387- 399
PubMed Link to Article
Hamilton  M A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;2356- 62
PubMed Link to Article
Philipp  MMaier  W The polydiagnostic interview: a structured interview for the polydiagnostic classification of psychiatric patients. Psychopathology 1986;19175- 185
PubMed Link to Article
Mieczkowski  TASweeney  JAHaas  GLJunker  BWBrown  RPMann  JJ Factor composition of the Suicide Intent Scale. Suicide Life Threat Behav 1993;2337- 45
PubMed
Mann  JJMalone  KMDiehl  DJPerel  JCooper  TBMintun  MA Demonstration in vivo of reduced serotonin responsivity in the brain of untreated depressed patients. Am J Psychiatry 1996;153174- 182
PubMed
Mann  JJMalone  KMDiehl  DJPerel  JNichols  TEMintun  MA Positron emission tomographic imaging of serotonin activation effects on prefrontal cortex in healthy volunteers. J Cereb Blood Flow Metab 1996;16418- 426
PubMed Link to Article
Oquendo  MAPlacidi  GPMalone  KMCampbell  CKeilp  JBrodsky  BKegeles  LSCooper  TBParsey  RVvan Heertum  RLMann  JJ Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch Gen Psychiatry 2003;6014- 22
PubMed Link to Article
Woods  RPGrafton  STHolmes  CJCherry  SRMazziotta  JC Automated image registration, I: general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 1998;22139- 152
PubMed Link to Article
Friston  KHolmes  AWorsley  KPoline  JFrith  CFrackowiak  R Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995;2189- 210
Link to Article
Friston  KJ Statistical parametric mapping. Thatcher  RWHallett  M  et al. eds.Functional Neuroimaging: Technical Foundations. San Diego, Calif Academic Press1994;79- 93
Talairach  JTournoux  P Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging.  New York, NY Thieme Medical Publishers1988;
Brett  M The MNI brain and the Talairach atlas [MRC Cognition and Brain Sciences Unit Web site]. Available at: http://www.mrc-cbu.cam.ac.uk. Accessed June 20, 2004
Calder  AJLawrence  ADYoung  AW Neuropsychology of fear and loathing. Nat Rev Neurosci 2001;2352- 363
PubMed Link to Article
Duncan  JSeitz  RJKolodny  JBor  DHerzog  HAhmed  ANewell  FNEmslie  H A neural basis for general intelligence. Science 2000;289457- 460
PubMed Link to Article
Osuch  EAKetter  TAKimbrell  TAGeorge  MSBenson  BEWillis  MWHerscovitch  PPost  RM Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biol Psychiatry 2000;481020- 1023
PubMed Link to Article
Baxter  LR  JrSchwartz  JMPhelps  MEMazziotta  JCGuze  BHSelin  CEGerner  RHSumida  RM Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46243- 250
PubMed Link to Article
Videbech  PRavnkilde  BPedersen  THHartvig  HEgander  AClemmensen  KRasmussen  NAAndersen  FGjedde  ARosenberg  R The Danish PET/depression project: clinical symptoms and cerebral blood flow: a regions-of-interest analysis. Acta Psychiatr Scand 2002;10635- 44
PubMed Link to Article
Ebmeier  KPCavanagh  JTMoffoot  APGlabus  MFO'Carroll  REGoodwin  GM Cerebral perfusion correlates of depressed mood. Br J Psychiatry 1997;17077- 81
PubMed Link to Article
Galynker  IICai  JOngseng  FFinestone  HDutta  ESerseni  D Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 1998;39608- 612
PubMed
Navarro  VGasto  CLomena  FMateos  JJMarcos  T Frontal cerebral perfusion dysfunction in elderly late-onset major depression assessed by 99MTC-HMPAO SPECT. Neuroimage 2001;14202- 205
PubMed Link to Article
Thomas  PVaiva  GSamaille  EMaron  MAlaix  CSteinling  MGoudemand  M Cerebral blood flow in major depression and dysthymia. J Affect Disord 1993;29235- 242
PubMed Link to Article
Yatham  LNClark  CCZis  AP A preliminary study of the effects of electroconvulsive therapy on regional brain glucose metabolism in patients with major depression. J ECT 2000;16171- 176
PubMed Link to Article
Biver  FGoldman  SDelvenne  VLuxen  ADe Maertelaer  VHubain  PMendlewicz  JLotstra  F Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 1994;36381- 388
PubMed Link to Article
Buchsbaum  MSWu  JDeLisi  LEHolcomb  HKessler  RJohnson  JKing  ACHazlett  ELangston  KPost  RM Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord 1986;10137- 152
PubMed Link to Article
Kanaya  TYonekawa  M Regional cerebral blood flow in depression. Jpn J Psychiatry Neurol 1990;44571- 576
PubMed
Mathew  RJMeyer  JSSemchuk  KMFrancis  DMortel  KClaghorn  JL Regional cerebral blood flow in depression: a preliminary report. J Clin Psychiatry 1980;4171- 72
PubMed
Scott  AIDougall  NRoss  MO'Carroll  RERiddle  WEbmeier  KPGoodwin  GM Short-term effects of electroconvulsive treatment on the uptake of 99mTc-exametazime into brain in major depression shown with single photon emission tomography. J Affect Disord 1994;3027- 34
PubMed Link to Article
Yazici  KMKapucu  OErbas  BVaroglu  EGulec  CBekdik  CF Assessment of changes in regional cerebral blood flow in patients with major depression using the 99mTc-HMPAO single photon emission tomography method. Eur J Nucl Med 1992;191038- 1043
PubMed Link to Article
Austin  MPDougall  NRoss  MMurray  CO'Carroll  REMoffoot  AEbmeier  KPGoodwin  GM Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J Affect Disord 1992;2631- 43
PubMed Link to Article
Smith  KAMorris  JSFriston  KJCowen  PJDolan  RJ Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. Br J Psychiatry 1999;174525- 529
PubMed Link to Article
Mayberg  HSLiotti  MBrannan  SKMcGinnis  SMahurin  RKJerabek  PASilva  JATekell  JLMartin  CCLancaster  JLFox  PT Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999;156675- 682
PubMed
Mayberg  HSLewis  PJRegenold  WWagner  HN  Jr Paralimbic hypoperfusion in unipolar depression. J Nucl Med 1994;35929- 934
PubMed
Dolan  RJBench  CJLiddle  PFFriston  KJFrith  CDGrasby  PMFrackowiak  RS Dorsolateral prefrontal cortex dysfunction in the major psychoses: symptom or disease specificity? J Neurol Neurosurg Psychiatry 1993;561290- 1294
PubMed Link to Article
Bench  CJFriston  KJBrown  RGScott  LCFrackowiak  RSDolan  RJ The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992;22607- 615
PubMed Link to Article
Dolan  RJBench  CJBrown  RGScott  LCFrackowiak  RS Neuropsychological dysfunction in depression: the relationship to regional cerebral blood flow. Psychol Med 1994;24849- 857
PubMed Link to Article
Ruby  PSirigu  ADecety  J Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 2002;38321- 339
PubMed Link to Article
Thoenissen  DZilles  KToni  I Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 2002;229024- 9034
PubMed
Snyder  LHBatista  APAndersen  RA Coding of intention in the posterior parietal cortex. Nature 1997;386167- 170
PubMed Link to Article
Andersson  SBergedalen  AM Cognitive correlates of apathy in traumatic brain injury. Neuropsychiatry Neuropsychol Behav Neurol 2002;15184- 191
PubMed
Tremblay  LSchultz  W Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J Neurophysiol 2000;831864- 1876
PubMed
Mayberg  HS Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997;9471- 481
PubMed
Horvitz  JC Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 2002;13765- 74
PubMed Link to Article
Kirsch  PSchienle  AStark  RSammer  GBlecker  CWalter  BOtt  UBurkart  JVaitl  D Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. Neuroimage 2003;201086- 1095
PubMed Link to Article
Delgado  MRLocke  HMStenger  VAFiez  JA Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 2003;327- 38
PubMed Link to Article
Kasai  KIwanami  AYamasue  HKuroki  NNakagome  KFukuda  M Neuroanatomy and neurophysiology in schizophrenia. Neurosci Res 2002;4393- 110
PubMed Link to Article
Rauch  SLSavage  CRAlpert  NMFischman  AJJenike  MA The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry 1997;42446- 452
PubMed Link to Article
O'Carroll  REMoffoot  APVan Beck  MDougall  NMurray  CEbmeier  KPGoodwin  GM The effect of anxiety induction on the regional uptake of 99mTc-exametazime in simple phobia as shown by single photon emission tomography (SPET). J Affect Disord 1993;28203- 210
PubMed Link to Article
Benkelfat  CBradwejn  JMeyer  EEllenbogen  MMilot  SGjedde  AEvans  A Functional neuroanatomy of CCK4-induced anxiety in normal healthy volunteers. Am J Psychiatry 1995;1521180- 1184
PubMed
Tashiro  MItoh  MKubota  KKumano  HMasud  MMMoser  EArai  HSasaki  H Relationship between trait anxiety, brain activity and natural killer cell activity in cancer patients: a preliminary PET study. Psychooncology 2001;10541- 546
PubMed Link to Article
Lucey  JVCosta  DCBlanes  TBusatto  GFPilowsky  LSTakei  NMarks  IMEll  PJKerwin  RW Regional cerebral blood flow in obsessive-compulsive disordered patients at rest: differential correlates with obsessive-compulsive and anxious-avoidant dimensions. Br J Psychiatry 1995;167629- 634
PubMed Link to Article
Conca  AFritzsche  HPeschina  WKonig  PSwoboda  EWiederin  HHaas  C Preliminary findings of simultaneous 18F-FDG and 99mTc-HMPAO SPECT in patients with depressive disorders at rest: differential correlates with ratings of anxiety. Psychiatry Res 2000;9843- 54
PubMed Link to Article
Wu  JCGillin  JCBuchsbaum  MSHershey  TJohnson  JCBunney  WE  Jr Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 1992;149538- 543
PubMed
Maquet  P Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 2000;9207- 231
PubMed Link to Article
Darwin  C The Expression of the Emotions in Man and Animals.  New York, NY AMS Press1972;
Darwin  C The Expression of the Emotions in Man and Animals.  London, England J Murray1872;
Lazarus  RS Cognition and motivation in emotion. Am Psychol 1991;46352- 367
PubMed Link to Article
Arnold  MB Emotion and Personality.  New York, NY Columbia University Press1960;
Clore  GLOrtony  A Cognition in emotion: always, sometimes, or never? Lane  RDNadel  LAhern  GLeds.Cognitive Neuroscience of Emotion. New York, NY Oxford University Press2000;24- 61
Phillips  MLDrevets  WCRauch  SLLane  R Neurobiology of emotion perception, I: the neural basis of normal emotion perception. Biol Psychiatry 2003;54504- 514
PubMed Link to Article
Phillips  MLDrevets  WCRauch  SLLane  R Neurobiology of emotion perception, II: implications for major psychiatric disorders. Biol Psychiatry 2003;54515- 528
PubMed Link to Article
Alexander  GECrutcher  MDDeLong  MR Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990;85119- 146
PubMed
Ongur  DPrice  JL The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000;10206- 219
PubMed Link to Article
Heit  GSmith  MEHalgren  E Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 1988;333773- 775
PubMed Link to Article
Young  AWAggleton  JPHellawell  DJJohnson  MBroks  PHanley  JR Face processing impairments after amygdalotomy. Brain 1995;11815- 24
PubMed Link to Article
Adolphs  RTranel  DDamasio  HDamasio  A Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 1994;372669- 672
PubMed Link to Article
Phelps  EALaBar  KSSpencer  DD Memory for emotional words following unilateral temporal lobectomy. Brain Cogn 1997;3585- 109
PubMed Link to Article
Scott  SKYoung  AWCalder  AJHellawell  DJAggleton  JPJohnson  M Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature 1997;385254- 257
PubMed Link to Article
Sprengelmeyer  RYoung  AWCalder  AJKarnat  ALange  HHomberg  VPerrett  DIRowland  D Loss of disgust: perception of faces and emotions in Huntington's disease. Brain 1996;1191647- 1665
PubMed Link to Article
Dubois  SRossion  BSchiltz  CBodart  JMMichel  CBruyer  RCrommelinck  M Effect of familiarity on the processing of human faces. Neuroimage 1999;9278- 289
PubMed Link to Article
Kawashima  RSugiura  MKato  TNakamura  AHatano  KIto  KFukuda  HKojima  SNakamura  K The human amygdala plays an important role in gaze monitoring: a PET study. Brain 1999;122779- 783
PubMed Link to Article
Breiter  HCEtcoff  NLWhalen  PJKennedy  WARauch  SLBuckner  RLStrauss  MMHyman  SERosen  BR Response and habituation of the human amygdala during visual processing of facial expression. Neuron 1996;17875- 887
PubMed Link to Article
Morris  JSFrith  CDPerrett  DIRowland  DYoung  AWCalder  AJDolan  RJ A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 1996;383812- 815
PubMed Link to Article
Phillips  MLYoung  AWSenior  CBrammer  MAndrew  CCalder  AJBullmore  ETPerrett  DIRowland  DWilliams  SCGray  JADavid  AS A specific neural substrate for perceiving facial expressions of disgust. Nature 1997;389495- 498
PubMed Link to Article
Phillips  MLMedford  NYoung  AWWilliams  LWilliams  SCBullmore  ETGray  JABrammer  MJ Time courses of left and right amygdalar responses to fearful facial expressions. Hum Brain Mapp 2001;12193- 202
PubMed Link to Article
Wright  CIFischer  HWhalen  PJMcInerney  SCShin  LMRauch  SL Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 2001;12379- 383
PubMed Link to Article
Blair  RJMorris  JSFrith  CDPerrett  DIDolan  RJ Dissociable neural responses to facial expressions of sadness and anger. Brain 1999;122883- 893
PubMed Link to Article
Taylor  SFLiberzon  IKoeppe  RA The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 2000;381415- 1425
PubMed Link to Article
Isenberg  NSilbersweig  DEngelien  AEmmerich  SMalavade  KBeattie  BLeon  ACStern  E Linguistic threat activates the human amygdala. Proc Natl Acad Sci U S A 1999;9610456- 10459
PubMed Link to Article
Cahill  LHaier  RJFallon  JAlkire  MTTang  CKeator  DWu  JMcGaugh  JL Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci U S A 1996;938016- 8021
PubMed Link to Article
Small  DMZald  DHJones-Gotman  MZatorre  RJPardo  JVFrey  SPetrides  M Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 1999;107- 14
PubMed Link to Article
Phelps  EAO'Connor  KJGatenby  JCGore  JCGrillon  CDavis  M Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 2001;4437- 441
PubMed Link to Article
Lane  RDReiman  EMAhern  GLSchwartz  GEDavidson  RJ Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 1997;154926- 933
PubMed
Phillips  MLYoung  AWScott  SKCalder  AJAndrew  CGiampietro  VWilliams  SCBullmore  ETBrammer  MGray  JA Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc Lond B Biol Sci 1998;2651809- 1817
PubMed Link to Article
Davis  MWhalen  PJ The amygdala: vigilance and emotion. Mol Psychiatry 2001;613- 34
PubMed Link to Article
Olds  JMilner  P Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 1954;47419- 427
PubMed Link to Article
Spanagel  RWeiss  F The dopamine hypothesis of reward: past and current status. Trends Neurosci 1999;22521- 527
PubMed Link to Article
Kluver  HBucy  PC Preliminary analysis of functions of the temporal lobes in monkeys: 1939. J Neuropsychiatry Clin Neurosci 1997;9606- 620
PubMed
Zola-Morgan  SSquire  LRAlvarez-Royo  PClower  RP Independence of memory functions and emotional behavior: separate contributions of the hippocampal formation and the amygdala. Hippocampus 1991;1207- 220
PubMed Link to Article
Bagshaw  MHKimble  DPPribram  KH The GSR of monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex. Neuropsychologia 1965;3111- 119
Link to Article
Bagshaw  MHBenzies  S Multiple measures of the orienting reaction and their dissociation after amygdalectomy in monkeys. Exp Neurol 1968;20175- 187
PubMed Link to Article
Gallagher  MGraham  PWHolland  PC The amygdala central nucleus and appetitive pavlovian conditioning: lesions impair one class of conditioned behavior. J Neurosci 1990;101906- 1911
PubMed
Blanchard  DCBlanchard  RJ Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 1972;81281- 290
PubMed Link to Article
Devinsky  OMorrell  MJVogt  BA Contributions of anterior cingulate cortex to behaviour. Brain 1995;118279- 306
PubMed Link to Article
Paus  T Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001;2417- 424
PubMed Link to Article
Frysztak  RJNeafsey  EJ The effect of medial frontal cortex lesions on respiration, “freezing,” and ultrasonic vocalizations during conditioned emotional responses in rats. Cereb Cortex 1991;1418- 425
PubMed Link to Article
MacLean  PDNewman  JD Role of midline frontolimbic cortex in production of the isolation call of squirrel monkeys. Brain Res 1988;450111- 123
PubMed Link to Article
Buchanan  SLPowell  DA Cingulothalamic and prefrontal control of autonomic function. Vogt  BGabriel  Meds.Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook. Boston, Mass Birkhauser1993;381- 414
Rolls  ET Precis of the brain and emotion. Behav Brain Sci 2000;23177- 191
PubMed Link to Article
Meunier  MBachevalier  JMishkin  M Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 1997;35999- 1015
PubMed Link to Article
Schoenbaum  GChiba  AAGallagher  M Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1998;1155- 159
PubMed Link to Article
Sullivan  RMGratton  A Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 1999;192834- 2840
PubMed
Aggleton  JPBrown  MW Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999;22425- 444
PubMed
Bechara  ATranel  DDamasio  HAdolphs  RRockland  CDamasio  AR Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 1995;2691115- 1118
PubMed Link to Article
Angelini  LMazzucchi  APicciotto  FNardocci  NBroggi  G Focal lesion of the right cingulum: a case report in a child. J Neurol Neurosurg Psychiatry 1981;44355- 357
PubMed Link to Article
Levin  BDuchowny  M Childhood obsessive-compulsive disorder and cingulate epilepsy. Biol Psychiatry 1991;301049- 1055
PubMed Link to Article
Gloor  P Role of the amygdala in temporal lobe epilepsy. Aggleton  JPed.The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. New York, NY Wiley-Liss1992;505- 538
Bancaud  JTalairach  J Clinical semiology of frontal lobe seizures. Adv Neurol 1992;573- 58
PubMed
Kawasaki  HKaufman  ODamasio  HDamasio  ARGranner  MBakken  HHori  THoward  MA  IIIAdolphs  R Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat Neurosci 2001;415- 16
PubMed Link to Article
Hornak  JRolls  ETWade  D Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia 1996;34247- 261
PubMed Link to Article
Damasio  AR Descartes' error and the future of human life [editorial]. Sci Am 1994;271144
PubMed Link to Article
Bechara  ADamasio  HTranel  DAnderson  SW Dissociation of working memory from decision making within the human prefrontal cortex. J Neurosci 1998;18428- 437
PubMed
Breiter  HCGollub  RLWeisskoff  RMKennedy  DNMakris  NBerke  JDGoodman  JMKantor  HLGastfriend  DRRiorden  JPMathew  RTRosen  BRHyman  SE Acute effects of cocaine on human brain activity and emotion. Neuron 1997;19591- 611
PubMed Link to Article
Pagnoni  GZink  CFMontague  PRBerns  GS Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 2002;597- 98
PubMed Link to Article
Knutson  BFong  GWAdams  CMVarner  JLHommer  D Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001;123683- 3687
PubMed Link to Article
Bartels  AZeki  S The neural basis of romantic love. Neuroreport 2000;113829- 3834
PubMed Link to Article
Drevets  WCGautier  CPrice  JCKupfer  DJKinahan  PEGrace  AAPrice  JLMathis  CA Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 2001;4981- 96
PubMed Link to Article
Reiman  EMLane  RDAhern  GLSchwartz  GEDavidson  RJFriston  KJYun  LSChen  K Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 1997;154918- 925
PubMed
Buchel  CDolan  RJArmony  JLFriston  KJ Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J Neurosci 1999;1910869- 10876
PubMed
LaBar  KSGatenby  JCGore  JCLeDoux  JEPhelps  EA Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 1998;20937- 945
PubMed Link to Article
Morris  JSOhman  ADolan  RJ Conscious and unconscious emotional learning in the human amygdala. Nature 1998;393467- 470
PubMed Link to Article
Whalen  PJRauch  SLEtcoff  NLMcInerney  SCLee  MBJenike  MA Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 1998;18411- 418
PubMed
Shin  LMDougherty  DDOrr  SPPitman  RKLasko  MMacklin  MLAlpert  NMFischman  AJRauch  SL Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biol Psychiatry 2000;4843- 50
PubMed Link to Article
Elliott  RFriston  KJDolan  RJ Dissociable neural responses in human reward systems. J Neurosci 2000;206159- 6165
PubMed
O'Doherty  JKringelbach  MLRolls  ETHornak  JAndrews  C Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 2001;495- 102
PubMed Link to Article
O'Doherty  JRolls  ETFrancis  SBowtell  RMcGlone  F Representation of pleasant and aversive taste in the human brain. J Neurophysiol 2001;851315- 1321
PubMed
O'Doherty  JRolls  ETFrancis  SBowtell  RMcGlone  FKobal  GRenner  BAhne  G Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 2000;11893- 897
PubMed Link to Article
Greene  JDSommerville  RBNystrom  LEDarley  JMCohen  JD An fMRI investigation of emotional engagement in moral judgment. Science 2001;2932105- 2108
PubMed Link to Article
Dougherty  DDShin  LMAlpert  NMPitman  RKOrr  SPLasko  MMacklin  MLFischman  AJRauch  SL Anger in healthy men: a PET study using script-driven imagery. Biol Psychiatry 1999;46466- 472
PubMed Link to Article
Kimbrell  TAGeorge  MSParekh  PIKetter  TAPodell  DMDanielson  ALRepella  JDBenson  BEWillis  MWHerscovitch  PPost  RM Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biol Psychiatry 1999;46454- 465
PubMed Link to Article
Pietrini  PGuazzelli  MBasso  GJaffe  KGrafman  J Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am J Psychiatry 2000;1571772- 1781
PubMed Link to Article
Casey  KLMinoshima  SBerger  KLKoeppe  RAMorrow  TJFrey  KA Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 1994;71802- 807
PubMed
Rainville  PDuncan  GHPrice  DDCarrier  BBushnell  MC Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997;277968- 971
PubMed Link to Article
Critchley  HDMathias  CJDolan  RJ Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 2001;29537- 545
PubMed Link to Article
Critchley  HDMelmed  RNFeatherstone  EMathias  CJDolan  RJ Brain activity during biofeedback relaxation: a functional neuroimaging investigation. Brain 2001;1241003- 1012
PubMed Link to Article
Damasio  AR The Feeling of What Happens: Body and Emotion in the Making of Consciousness.  New York, NY Harcourt Brace & Co1999;
Tucker  DMLuu  PPribram  KH Social and emotional self-regulation. Ann N Y Acad Sci 1995;769213- 239
PubMed Link to Article
Gusnard  DAAkbudak  EShulman  GLRaichle  ME Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 2001;984259- 4264
PubMed Link to Article
Frith  CDFrith  U Interacting minds: a biological basis. Science 1999;2861692- 1695
PubMed Link to Article
Johnson  SCBaxter  LCWilder  LSPipe  JGHeiserman  JEPrigatano  GP Neural correlates of self-reflection. Brain 2002;1251808- 1814
PubMed Link to Article

Figures

Place holder to copy figure label and caption
Figure 1.

Regions shown as a volume in the glass brain. Maps of correlations of relative regional glucose metabolic rate in human brain in major depression, with severity of depression measured by the 24-item Hamilton Depression Rating Scale. Upper left, overall depression (total score). Upper right, Factor 1: psychic depression. Lower left, Factor 2: loss of motivated behavior. Lower right, Factor 5: sleep disturbance.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

A map of correlations of relative regional glucose metabolic rate in human brain in major depression, with severity of depression measured by factors 1, 2, and 5 of the 24-item Hamilton Depression Rating Scale. The color scales indicate the strength (t score) of the correlation (t score maps are overlaid on a series of transaxial slices [2 mm apart] of a coregistered magnetic resonance image from 38 mm below to 72 mm above the line connecting the anterior and posterior commissures). Red to orange regions are uniquely positively correlated with factor 1, green to light green regions correlate with factors 1 and 5, blue to light blue regions are uniquely negatively correlated with factor 2, and red to light red regions are uniquely positively correlated with factor 5, the sleep disturbance factor.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Factor Structure of the Hamilton Depression Rating Scale (HDRS)
Table Graphic Jump LocationTable 2. Regions in Which Relative Cerebral Glucose Metabolism Shows Significant Correlations With Hamilton Depression Rating Scale (HDRS) Total and Factor Scores*

References

Drevets  WC Neuroimaging studies of mood disorders. Biol Psychiatry 2000;48813- 829
PubMed Link to Article
Andreasen  NCArndt  SCizadlo  TO'Leary  DSWatkins  GLPonto  LLHichwa  RD Sample size and statistical power in [15O]H2O studies of human cognition. J Cereb Blood Flow Metab 1996;16804- 816
PubMed Link to Article
Baxter  LR PET studies of cerebral function in major depression and obsessive-compulsive disorder: the emerging prefrontal cortex consensus. Ann Clin Psychiatry 1991;3103- 109
Link to Article
Baxter  LR  JrPhelps  MEMazziotta  JCSchwartz  JMGerner  RHSelin  CESumida  RM Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 1985;42441- 447
PubMed Link to Article
Buchsbaum  MSWu  JSiegel  BVHackett  ETrenary  MAbel  LReynolds  C Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 1997;4115- 22
PubMed Link to Article
Daly  JJPrudic  JDevanand  DPNobler  MSLisanby  SHPeyser  SRoose  SPSackeim  HA ECT in bipolar and unipolar depression: differences in speed of response. Bipolar Disord 2001;395- 104
PubMed Link to Article
Dolan  RJBench  CJBrown  RGScott  LCFriston  KJFrackowiak  RS Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J Neurol Neurosurg Psychiatry 1992;55768- 773
PubMed Link to Article
Drevets  WCVideen  TOPrice  JLPreskorn  SHCarmichael  STRaichle  ME A functional anatomical study of unipolar depression. J Neurosci 1992;123628- 3641
PubMed
Guze  BHBaxter  LR  JrSchwartz  JMSzuba  MPMazziotta  JCPhelps  ME Changes in glucose metabolism in dementia of the Alzheimer type compared with depression: a preliminary report. Psychiatry Res 1991;40195- 202
PubMed Link to Article
Hagman  JOBuchsbaum  MSWu  JCRao  SJReynolds  CABlinder  BJ Comparison of regional brain metabolism in bulimia nervosa and affective disorder assessed with positron emission tomography. J Affect Disord 1990;19153- 162
PubMed Link to Article
Ho  APGillin  JCBuchsbaum  MSWu  JCAbel  LBunney  WE  Jr Brain glucose metabolism during non-rapid eye movement sleep in major depression: a positron emission tomography study. Arch Gen Psychiatry 1996;53645- 652
PubMed Link to Article
Kegeles  LSMalone  KMSlifstein  MEllis  SPXanthopoulos  EKeilp  JGCampbell  COquendo  MVan Heertum  RLMann  JJ Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry 2003;16076- 82
PubMed Link to Article
Ketter  TAKimbrell  TAGeorge  MSWillis  MWBenson  BEDanielson  AFrye  MAHerscovitch  PPost  RM Baseline cerebral hypermetabolism associated with carbamazepine response, and hypometabolism with nimodipine response in mood disorders. Biol Psychiatry 1999;461364- 1374
PubMed Link to Article
Kimbrell  TAKetter  TAGeorge  MSLittle  JTBenson  BEWillis  MWHerscovitch  PPost  RM Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry 2002;51237- 252
PubMed Link to Article
Kling  ASMetter  EJRiege  WHKuhl  DE Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am J Psychiatry 1986;143175- 180
PubMed
Kumar  ANewberg  AAlavi  ABerlin  JSmith  RReivich  M Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study. Proc Natl Acad Sci U S A 1993;907019- 7023
PubMed Link to Article
Pawlik  GBeil  CHebold  IHerholz  KWienhard  KHeiss  WD Positron emission tomography in depression research: principles–results–perspectives. Psychopathology 1986;19 ((suppl 2)) 85- 93
PubMed Link to Article
Post  RMDeLisi  LEHolcomb  HHUhde  TWCohen  RBuchsbaum  MS Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiatry 1987;22545- 553
PubMed Link to Article
Ring  HABench  CJTrimble  MRBrooks  DJFrackowiak  RSDolan  RJ Depression in Parkinson's disease: a positron emission study. Br J Psychiatry 1994;165333- 339
PubMed Link to Article
Rubin  ESackeim  HAProhovnik  IMoeller  JRSchnur  DBMukherjee  S Regional cerebral blood flow in mood disorders, IV: comparison of mania and depression. Psychiatry Res 1995;611- 10
PubMed Link to Article
Sackeim  HAProhovnik  IMoeller  JRBrown  RPApter  SPrudic  JDevanand  DPMukherjee  S Regional cerebral blood flow in mood disorders, I: comparison of major depressives and normal controls at rest. Arch Gen Psychiatry 1990;4760- 70
PubMed Link to Article
Silfverskiold  PRisberg  J Regional cerebral blood flow in depression and mania. Arch Gen Psychiatry 1989;46253- 259
PubMed Link to Article
Stoll  ALRenshaw  PFYurgelun-Todd  DACohen  BM Neuroimaging in bipolar disorder: what have we learned? Biol Psychiatry 2000;48505- 517[published correction appears in Biol Psychiatry. 2001;49:80]
PubMed Link to Article
Tiemeier  HBakker  SLHofman  AKoudstaal  PJBreteler  MM Cerebral haemodynamics and depression in the elderly. J Neurol Neurosurg Psychiatry 2002;7334- 39
PubMed Link to Article
Uytdenhoef  PPortelange  PJacquy  JCharles  GLinkowski  PMendlewicz  J Regional cerebral blood flow and lateralized hemispheric dysfunction in depression. Br J Psychiatry 1983;143128- 132
PubMed Link to Article
Videbech  P PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 2000;10111- 20
PubMed Link to Article
Videbech  PRavnkilde  BPedersen  AREgander  ALandbo  BRasmussen  NAAndersen  FStodkilde-Jorgensen  HGjedde  ARosenberg  R The Danish PET/depression project: PET findings in patients with major depression. Psychol Med 2001;311147- 1158
PubMed
Wu  JCBuchsbaum  MSJohnson  JCHershey  TGWagner  EATeng  CLottenberg  S Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. J Affect Disord 1993;2815- 25
PubMed Link to Article
Oquendo  MABarrera  AEllis  SPLi  SBurke  AKGrunebaum  MEndicott  JMann  JJ Instability of symptoms in recurrent major depression: a prospective study. Am J Psychiatry 2004;161255- 261
PubMed Link to Article
Boyle  GJ Self-report measures of depression: some psychometric considerations. Br J Clin Psychol 1985;2445- 59
PubMed Link to Article
Katz  MMKoslow  SHBerman  NSecunda  SMaas  JWCasper  RKocsis  JStokes  P A multi-vantaged approach to measurement of behavioral and affect states for clinical and psychobiological research. Psychol Rep 1984;55619- 671
PubMed Link to Article
Tanaka  JHuba  G Confirmatory hierarchical factor analyses of psychological distress measures. J Pers Soc Psychol 1984;46621- 635
Link to Article
Byrne  BMBaron  P The Beck Depression Inventory: testing and cross-validating a hierarchical factor structure for nonclinical adolescents. Measure Eval Couns Dev 1993;26164- 178
Byrne  BMBaron  PLarsson  BMelin  L The Beck Depression Inventory: testing and cross-validating a second-order factorial structure for Swedish nonclinical adolescents. Behav Res Ther 1995;33345- 356
PubMed Link to Article
McConville  CCooper  C The structure of moods. Pers Individ Dif 1992;13909- 919
Link to Article
Cleary  PGuy  W Factor analysis of the Hamilton Depression Scale. Drugs Exp Clin Res 1977;1115- 120
Gullion  CMRush  AJ Toward a generalizable model of symptoms in major depressive disorder. Biol Psychiatry 1998;44959- 972
PubMed Link to Article
Steer  RABeck  ATRiskind  JHBrown  G Relationships between the Beck Depression Inventory and the Hamilton Psychiatric Rating Scale for Depression in depressed outpatients. J Psychopathol Behav Assess 1987;9327- 339
Link to Article
Weckowicz  TECropley  AJMuir  W An attempt to replicate the results of a factor analytic study in depressed patients. J Clin Psychol 1971;2730- 31
PubMed Link to Article
Gibbons  RDClark  DCKupfer  DJ Exactly what does the Hamilton Depression Rating Scale measure? J Psychiatr Res 1993;27259- 273
PubMed Link to Article
Hamilton  M Comparison of factors by Ahmavaara's method. Br J Math Stat Psychol 1967;20107- 110
PubMed Link to Article
Hamilton  M Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 1967;6278- 296
PubMed Link to Article
O'Brien  KPGlaudin  V Factorial structure and factor reliability of the Hamilton Rating Scale for Depression. Acta Psychiatr Scand 1988;78113- 120
PubMed Link to Article
Rhoades  HMOverall  JE The Hamilton Depression Scale: factor scoring and profile classification. Psychopharmacol Bull 1983;1991- 96
Mowbray  RM The Hamilton Rating Scale for depression: a factor analysis. Psychol Med 1972;2272- 280
PubMed Link to Article
Faravelli  CAlbanesi  GPoli  E Assessment of depression: a comparison of rating scales. J Affect Disord 1986;11245- 253
PubMed Link to Article
Ramos-Brieva  JACordero-Villafafila  A A new validation of the Hamilton Rating Scale for Depression. J Psychiatr Res 1988;2221- 28
PubMed Link to Article
Pancheri  PPicardi  APasquini  MGaetano  PBiondi  M Psychopathological dimensions of depression: a factor study of the 17-item Hamilton Depression Rating Scale in unipolar depressed outpatients. J Affect Disord 2002;6841- 47
PubMed Link to Article
Marcos  TSalamero  M Factor study of the Hamilton Rating Scale for Depression and the Bech Melancholia Scale. Acta Psychiatr Scand 1990;82178- 181
PubMed Link to Article
Fleck  MPPoirier-Littre  MFGuelfi  JDBourdel  MCLoo  H Factorial structure of the 17-item Hamilton Depression Rating Scale. Acta Psychiatr Scand 1995;92168- 172
PubMed Link to Article
Bech  PStage  KBNair  NPLarsen  JKKragh-Sorensen  PGjerris  A The Major Depression Rating Scale (MDS): inter-rater reliability and validity across different settings in randomized moclobemide trials. J Affect Disord 1997;4239- 48
PubMed Link to Article
Benazzi  F A 10-item Hamilton Depression Rating Scale to measure major depressive episode severity in outpatients. Int J Geriatr Psychiatry 1998;13570- 571
PubMed Link to Article
Kivela  SLPahkala  K Factor structure of the Hamilton Rating Scale for Depression among depressed elderly Finns. Z Psychol Z Angew Psychol 1988;196389- 399
PubMed
Onega  LLAbraham  IL Factor structure of the Hamilton Rating Scale for Depression in a cohort of community-dwelling elderly. Int J Geriatr Psychiatry 1997;12760- 764
PubMed Link to Article
Grayson  DA Common factor models of validity and reliability for use with ordinal data in k x k tables. Br J Math Stat Psychol 2001;54347- 365
PubMed Link to Article
Goldstein  RBPrescott  CAKendler  KS Genetic and environmental factors in conduct problems and adult antisocial behavior among adult female twins. J Nerv Ment Dis 2001;189201- 209
PubMed Link to Article
Hripcsak  GHeitjan  DF Measuring agreement in medical informatics reliability studies. J Biomed Inform 2002;3599- 110
PubMed Link to Article
Holland  LAZolondek  SCAbel  GGJordan  ADBecker  JV Psychometric analysis of the Sexual Interest Cardsort Questionnaire. Sex Abuse 2000;12107- 122
PubMed
Kendler  KSJacobson  KCMyers  JPrescott  CA Sex differences in genetic and environmental risk factors for irrational fears and phobias. Psychol Med 2002;32209- 217
PubMed Link to Article
McCallum  JMackinnon  ASimons  LSimons  J Measurement properties of the Center for Epidemiological Studies Depression Scale: an Australian community study of aged persons. J Gerontol B Psychol Sci Soc Sci 1995;50S182- S189
PubMed Link to Article
Gillespie  NKirk  KMHeath  ACMartin  NGHickie  I Somatic distress as a distinct psychological dimension. Soc Psychiatry Psychiatr Epidemiol 1999;34451- 458
PubMed Link to Article
Bench  CJFriston  KJBrown  RGFrackowiak  RSDolan  RJ Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 1993;23579- 590
PubMed Link to Article
Brody  ALSaxena  SMandelkern  MAFairbanks  LAHo  MLBaxter  LR Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry 2001;50171- 178
PubMed Link to Article
Dunn  RTKimbrell  TAKetter  TAFrye  MAWillis  MWLuckenbaugh  DAPost  RM Principal components of the Beck Depression Inventory and regional cerebral metabolism in unipolar and bipolar depression. Biol Psychiatry 2002;51387- 399
PubMed Link to Article
Hamilton  M A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;2356- 62
PubMed Link to Article
Philipp  MMaier  W The polydiagnostic interview: a structured interview for the polydiagnostic classification of psychiatric patients. Psychopathology 1986;19175- 185
PubMed Link to Article
Mieczkowski  TASweeney  JAHaas  GLJunker  BWBrown  RPMann  JJ Factor composition of the Suicide Intent Scale. Suicide Life Threat Behav 1993;2337- 45
PubMed
Mann  JJMalone  KMDiehl  DJPerel  JCooper  TBMintun  MA Demonstration in vivo of reduced serotonin responsivity in the brain of untreated depressed patients. Am J Psychiatry 1996;153174- 182
PubMed
Mann  JJMalone  KMDiehl  DJPerel  JNichols  TEMintun  MA Positron emission tomographic imaging of serotonin activation effects on prefrontal cortex in healthy volunteers. J Cereb Blood Flow Metab 1996;16418- 426
PubMed Link to Article
Oquendo  MAPlacidi  GPMalone  KMCampbell  CKeilp  JBrodsky  BKegeles  LSCooper  TBParsey  RVvan Heertum  RLMann  JJ Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch Gen Psychiatry 2003;6014- 22
PubMed Link to Article
Woods  RPGrafton  STHolmes  CJCherry  SRMazziotta  JC Automated image registration, I: general methods and intrasubject, intramodality validation. J Comput Assist Tomogr 1998;22139- 152
PubMed Link to Article
Friston  KHolmes  AWorsley  KPoline  JFrith  CFrackowiak  R Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995;2189- 210
Link to Article
Friston  KJ Statistical parametric mapping. Thatcher  RWHallett  M  et al. eds.Functional Neuroimaging: Technical Foundations. San Diego, Calif Academic Press1994;79- 93
Talairach  JTournoux  P Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging.  New York, NY Thieme Medical Publishers1988;
Brett  M The MNI brain and the Talairach atlas [MRC Cognition and Brain Sciences Unit Web site]. Available at: http://www.mrc-cbu.cam.ac.uk. Accessed June 20, 2004
Calder  AJLawrence  ADYoung  AW Neuropsychology of fear and loathing. Nat Rev Neurosci 2001;2352- 363
PubMed Link to Article
Duncan  JSeitz  RJKolodny  JBor  DHerzog  HAhmed  ANewell  FNEmslie  H A neural basis for general intelligence. Science 2000;289457- 460
PubMed Link to Article
Osuch  EAKetter  TAKimbrell  TAGeorge  MSBenson  BEWillis  MWHerscovitch  PPost  RM Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biol Psychiatry 2000;481020- 1023
PubMed Link to Article
Baxter  LR  JrSchwartz  JMPhelps  MEMazziotta  JCGuze  BHSelin  CEGerner  RHSumida  RM Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46243- 250
PubMed Link to Article
Videbech  PRavnkilde  BPedersen  THHartvig  HEgander  AClemmensen  KRasmussen  NAAndersen  FGjedde  ARosenberg  R The Danish PET/depression project: clinical symptoms and cerebral blood flow: a regions-of-interest analysis. Acta Psychiatr Scand 2002;10635- 44
PubMed Link to Article
Ebmeier  KPCavanagh  JTMoffoot  APGlabus  MFO'Carroll  REGoodwin  GM Cerebral perfusion correlates of depressed mood. Br J Psychiatry 1997;17077- 81
PubMed Link to Article
Galynker  IICai  JOngseng  FFinestone  HDutta  ESerseni  D Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 1998;39608- 612
PubMed
Navarro  VGasto  CLomena  FMateos  JJMarcos  T Frontal cerebral perfusion dysfunction in elderly late-onset major depression assessed by 99MTC-HMPAO SPECT. Neuroimage 2001;14202- 205
PubMed Link to Article
Thomas  PVaiva  GSamaille  EMaron  MAlaix  CSteinling  MGoudemand  M Cerebral blood flow in major depression and dysthymia. J Affect Disord 1993;29235- 242
PubMed Link to Article
Yatham  LNClark  CCZis  AP A preliminary study of the effects of electroconvulsive therapy on regional brain glucose metabolism in patients with major depression. J ECT 2000;16171- 176
PubMed Link to Article
Biver  FGoldman  SDelvenne  VLuxen  ADe Maertelaer  VHubain  PMendlewicz  JLotstra  F Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 1994;36381- 388
PubMed Link to Article
Buchsbaum  MSWu  JDeLisi  LEHolcomb  HKessler  RJohnson  JKing  ACHazlett  ELangston  KPost  RM Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord 1986;10137- 152
PubMed Link to Article
Kanaya  TYonekawa  M Regional cerebral blood flow in depression. Jpn J Psychiatry Neurol 1990;44571- 576
PubMed
Mathew  RJMeyer  JSSemchuk  KMFrancis  DMortel  KClaghorn  JL Regional cerebral blood flow in depression: a preliminary report. J Clin Psychiatry 1980;4171- 72
PubMed
Scott  AIDougall  NRoss  MO'Carroll  RERiddle  WEbmeier  KPGoodwin  GM Short-term effects of electroconvulsive treatment on the uptake of 99mTc-exametazime into brain in major depression shown with single photon emission tomography. J Affect Disord 1994;3027- 34
PubMed Link to Article
Yazici  KMKapucu  OErbas  BVaroglu  EGulec  CBekdik  CF Assessment of changes in regional cerebral blood flow in patients with major depression using the 99mTc-HMPAO single photon emission tomography method. Eur J Nucl Med 1992;191038- 1043
PubMed Link to Article
Austin  MPDougall  NRoss  MMurray  CO'Carroll  REMoffoot  AEbmeier  KPGoodwin  GM Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J Affect Disord 1992;2631- 43
PubMed Link to Article
Smith  KAMorris  JSFriston  KJCowen  PJDolan  RJ Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. Br J Psychiatry 1999;174525- 529
PubMed Link to Article
Mayberg  HSLiotti  MBrannan  SKMcGinnis  SMahurin  RKJerabek  PASilva  JATekell  JLMartin  CCLancaster  JLFox  PT Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999;156675- 682
PubMed
Mayberg  HSLewis  PJRegenold  WWagner  HN  Jr Paralimbic hypoperfusion in unipolar depression. J Nucl Med 1994;35929- 934
PubMed
Dolan  RJBench  CJLiddle  PFFriston  KJFrith  CDGrasby  PMFrackowiak  RS Dorsolateral prefrontal cortex dysfunction in the major psychoses: symptom or disease specificity? J Neurol Neurosurg Psychiatry 1993;561290- 1294
PubMed Link to Article
Bench  CJFriston  KJBrown  RGScott  LCFrackowiak  RSDolan  RJ The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression. Psychol Med 1992;22607- 615
PubMed Link to Article
Dolan  RJBench  CJBrown  RGScott  LCFrackowiak  RS Neuropsychological dysfunction in depression: the relationship to regional cerebral blood flow. Psychol Med 1994;24849- 857
PubMed Link to Article
Ruby  PSirigu  ADecety  J Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 2002;38321- 339
PubMed Link to Article
Thoenissen  DZilles  KToni  I Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci 2002;229024- 9034
PubMed
Snyder  LHBatista  APAndersen  RA Coding of intention in the posterior parietal cortex. Nature 1997;386167- 170
PubMed Link to Article
Andersson  SBergedalen  AM Cognitive correlates of apathy in traumatic brain injury. Neuropsychiatry Neuropsychol Behav Neurol 2002;15184- 191
PubMed
Tremblay  LSchultz  W Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J Neurophysiol 2000;831864- 1876
PubMed
Mayberg  HS Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997;9471- 481
PubMed
Horvitz  JC Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 2002;13765- 74
PubMed Link to Article
Kirsch  PSchienle  AStark  RSammer  GBlecker  CWalter  BOtt  UBurkart  JVaitl  D Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. Neuroimage 2003;201086- 1095
PubMed Link to Article
Delgado  MRLocke  HMStenger  VAFiez  JA Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 2003;327- 38
PubMed Link to Article
Kasai  KIwanami  AYamasue  HKuroki  NNakagome  KFukuda  M Neuroanatomy and neurophysiology in schizophrenia. Neurosci Res 2002;4393- 110
PubMed Link to Article
Rauch  SLSavage  CRAlpert  NMFischman  AJJenike  MA The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry 1997;42446- 452
PubMed Link to Article
O'Carroll  REMoffoot  APVan Beck  MDougall  NMurray  CEbmeier  KPGoodwin  GM The effect of anxiety induction on the regional uptake of 99mTc-exametazime in simple phobia as shown by single photon emission tomography (SPET). J Affect Disord 1993;28203- 210
PubMed Link to Article
Benkelfat  CBradwejn  JMeyer  EEllenbogen  MMilot  SGjedde  AEvans  A Functional neuroanatomy of CCK4-induced anxiety in normal healthy volunteers. Am J Psychiatry 1995;1521180- 1184
PubMed
Tashiro  MItoh  MKubota  KKumano  HMasud  MMMoser  EArai  HSasaki  H Relationship between trait anxiety, brain activity and natural killer cell activity in cancer patients: a preliminary PET study. Psychooncology 2001;10541- 546
PubMed Link to Article
Lucey  JVCosta  DCBlanes  TBusatto  GFPilowsky  LSTakei  NMarks  IMEll  PJKerwin  RW Regional cerebral blood flow in obsessive-compulsive disordered patients at rest: differential correlates with obsessive-compulsive and anxious-avoidant dimensions. Br J Psychiatry 1995;167629- 634
PubMed Link to Article
Conca  AFritzsche  HPeschina  WKonig  PSwoboda  EWiederin  HHaas  C Preliminary findings of simultaneous 18F-FDG and 99mTc-HMPAO SPECT in patients with depressive disorders at rest: differential correlates with ratings of anxiety. Psychiatry Res 2000;9843- 54
PubMed Link to Article
Wu  JCGillin  JCBuchsbaum  MSHershey  TJohnson  JCBunney  WE  Jr Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 1992;149538- 543
PubMed
Maquet  P Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 2000;9207- 231
PubMed Link to Article
Darwin  C The Expression of the Emotions in Man and Animals.  New York, NY AMS Press1972;
Darwin  C The Expression of the Emotions in Man and Animals.  London, England J Murray1872;
Lazarus  RS Cognition and motivation in emotion. Am Psychol 1991;46352- 367
PubMed Link to Article
Arnold  MB Emotion and Personality.  New York, NY Columbia University Press1960;
Clore  GLOrtony  A Cognition in emotion: always, sometimes, or never? Lane  RDNadel  LAhern  GLeds.Cognitive Neuroscience of Emotion. New York, NY Oxford University Press2000;24- 61
Phillips  MLDrevets  WCRauch  SLLane  R Neurobiology of emotion perception, I: the neural basis of normal emotion perception. Biol Psychiatry 2003;54504- 514
PubMed Link to Article
Phillips  MLDrevets  WCRauch  SLLane  R Neurobiology of emotion perception, II: implications for major psychiatric disorders. Biol Psychiatry 2003;54515- 528
PubMed Link to Article
Alexander  GECrutcher  MDDeLong  MR Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 1990;85119- 146
PubMed
Ongur  DPrice  JL The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000;10206- 219
PubMed Link to Article
Heit  GSmith  MEHalgren  E Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 1988;333773- 775
PubMed Link to Article
Young  AWAggleton  JPHellawell  DJJohnson  MBroks  PHanley  JR Face processing impairments after amygdalotomy. Brain 1995;11815- 24
PubMed Link to Article
Adolphs  RTranel  DDamasio  HDamasio  A Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 1994;372669- 672
PubMed Link to Article
Phelps  EALaBar  KSSpencer  DD Memory for emotional words following unilateral temporal lobectomy. Brain Cogn 1997;3585- 109
PubMed Link to Article
Scott  SKYoung  AWCalder  AJHellawell  DJAggleton  JPJohnson  M Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature 1997;385254- 257
PubMed Link to Article
Sprengelmeyer  RYoung  AWCalder  AJKarnat  ALange  HHomberg  VPerrett  DIRowland  D Loss of disgust: perception of faces and emotions in Huntington's disease. Brain 1996;1191647- 1665
PubMed Link to Article
Dubois  SRossion  BSchiltz  CBodart  JMMichel  CBruyer  RCrommelinck  M Effect of familiarity on the processing of human faces. Neuroimage 1999;9278- 289
PubMed Link to Article
Kawashima  RSugiura  MKato  TNakamura  AHatano  KIto  KFukuda  HKojima  SNakamura  K The human amygdala plays an important role in gaze monitoring: a PET study. Brain 1999;122779- 783
PubMed Link to Article
Breiter  HCEtcoff  NLWhalen  PJKennedy  WARauch  SLBuckner  RLStrauss  MMHyman  SERosen  BR Response and habituation of the human amygdala during visual processing of facial expression. Neuron 1996;17875- 887
PubMed Link to Article
Morris  JSFrith  CDPerrett  DIRowland  DYoung  AWCalder  AJDolan  RJ A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 1996;383812- 815
PubMed Link to Article
Phillips  MLYoung  AWSenior  CBrammer  MAndrew  CCalder  AJBullmore  ETPerrett  DIRowland  DWilliams  SCGray  JADavid  AS A specific neural substrate for perceiving facial expressions of disgust. Nature 1997;389495- 498
PubMed Link to Article
Phillips  MLMedford  NYoung  AWWilliams  LWilliams  SCBullmore  ETGray  JABrammer  MJ Time courses of left and right amygdalar responses to fearful facial expressions. Hum Brain Mapp 2001;12193- 202
PubMed Link to Article
Wright  CIFischer  HWhalen  PJMcInerney  SCShin  LMRauch  SL Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 2001;12379- 383
PubMed Link to Article
Blair  RJMorris  JSFrith  CDPerrett  DIDolan  RJ Dissociable neural responses to facial expressions of sadness and anger. Brain 1999;122883- 893
PubMed Link to Article
Taylor  SFLiberzon  IKoeppe  RA The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 2000;381415- 1425
PubMed Link to Article
Isenberg  NSilbersweig  DEngelien  AEmmerich  SMalavade  KBeattie  BLeon  ACStern  E Linguistic threat activates the human amygdala. Proc Natl Acad Sci U S A 1999;9610456- 10459
PubMed Link to Article
Cahill  LHaier  RJFallon  JAlkire  MTTang  CKeator  DWu  JMcGaugh  JL Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci U S A 1996;938016- 8021
PubMed Link to Article
Small  DMZald  DHJones-Gotman  MZatorre  RJPardo  JVFrey  SPetrides  M Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 1999;107- 14
PubMed Link to Article
Phelps  EAO'Connor  KJGatenby  JCGore  JCGrillon  CDavis  M Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 2001;4437- 441
PubMed Link to Article
Lane  RDReiman  EMAhern  GLSchwartz  GEDavidson  RJ Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 1997;154926- 933
PubMed
Phillips  MLYoung  AWScott  SKCalder  AJAndrew  CGiampietro  VWilliams  SCBullmore  ETBrammer  MGray  JA Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc Lond B Biol Sci 1998;2651809- 1817
PubMed Link to Article
Davis  MWhalen  PJ The amygdala: vigilance and emotion. Mol Psychiatry 2001;613- 34
PubMed Link to Article
Olds  JMilner  P Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 1954;47419- 427
PubMed Link to Article
Spanagel  RWeiss  F The dopamine hypothesis of reward: past and current status. Trends Neurosci 1999;22521- 527
PubMed Link to Article
Kluver  HBucy  PC Preliminary analysis of functions of the temporal lobes in monkeys: 1939. J Neuropsychiatry Clin Neurosci 1997;9606- 620
PubMed
Zola-Morgan  SSquire  LRAlvarez-Royo  PClower  RP Independence of memory functions and emotional behavior: separate contributions of the hippocampal formation and the amygdala. Hippocampus 1991;1207- 220
PubMed Link to Article
Bagshaw  MHKimble  DPPribram  KH The GSR of monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex. Neuropsychologia 1965;3111- 119
Link to Article
Bagshaw  MHBenzies  S Multiple measures of the orienting reaction and their dissociation after amygdalectomy in monkeys. Exp Neurol 1968;20175- 187
PubMed Link to Article
Gallagher  MGraham  PWHolland  PC The amygdala central nucleus and appetitive pavlovian conditioning: lesions impair one class of conditioned behavior. J Neurosci 1990;101906- 1911
PubMed
Blanchard  DCBlanchard  RJ Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 1972;81281- 290
PubMed Link to Article
Devinsky  OMorrell  MJVogt  BA Contributions of anterior cingulate cortex to behaviour. Brain 1995;118279- 306
PubMed Link to Article
Paus  T Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2001;2417- 424
PubMed Link to Article
Frysztak  RJNeafsey  EJ The effect of medial frontal cortex lesions on respiration, “freezing,” and ultrasonic vocalizations during conditioned emotional responses in rats. Cereb Cortex 1991;1418- 425
PubMed Link to Article
MacLean  PDNewman  JD Role of midline frontolimbic cortex in production of the isolation call of squirrel monkeys. Brain Res 1988;450111- 123
PubMed Link to Article
Buchanan  SLPowell  DA Cingulothalamic and prefrontal control of autonomic function. Vogt  BGabriel  Meds.Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook. Boston, Mass Birkhauser1993;381- 414
Rolls  ET Precis of the brain and emotion. Behav Brain Sci 2000;23177- 191