0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Article |

Effect of Team Sport Participation on Genetic Predisposition to Adolescent Smoking Progression FREE

Janet Audrain-McGovern, PhD; Daniel Rodriguez, PhD; E. Paul Wileyto, PhD; Kathryn H. Schmitz, PhD, MPH; Peter G. Shields, MD
[+] Author Affiliations

Author Affiliations: Tobacco Use Research Center, Department of Psychiatry (Drs McGovern, Rodriguez, and Wileyto), and Department of Biostatistics and Epidemiology (Dr Schmitz), University of Pennsylvania, Philadelphia; and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (Dr Shields).


Arch Gen Psychiatry. 2006;63(4):433-441. doi:10.1001/archpsyc.63.4.433.
Text Size: A A A
Published online

Context  There is much to be learned about why some adolescents progress to a regular smoking habit and others do not.

Objective  To evaluate whether (1) team sport participation buffers the effect of having 2 smoking risk genotypes (the dopamine reuptake transporter [SLC6A3] and the dopamine D2 receptor [DRD2]) or 1 of these risk genotypes vs having none on adolescent smoking progression and (2) the buffering effects of team sports were due to physical activity associated with team sport participation.

Design  Longitudinal cohort study. Survey data were collected annually from grade 9 to the end of grade 12. Self-report measures included smoking, team sport participation, physical activity, depression, smoking exposure, and alcohol and marijuana use. DNA was collected via buccal swabs. Data were analyzed using latent growth modeling.

Setting  Five public high schools in Virginia.

Participants  A total of 361 students of European ancestry.

Main Outcome Measure  Smoking progression.

Results  For adolescents participating in at least 1 team sport, but not for adolescents with no team sport participation, physical activity had a significant negative effect on smoking progression (z = −3.85, P<.001; χ21,N = 361 = 6.73, P = .009). In addition, having 1 (z = 2.69; P = .007) and 2 (z = 2.22; P = .03) smoking risk genotypes had a positive effect on physical activity. These represented significant between-group effects (χ21,N = 361 = 6.29, P = .01; χ21,N = 361 = 3.81, P = .05, respectively). Thus, having 1 or more smoking risk genotypes was related to higher levels of physical activity, which, in turn, was related to lower levels of smoking progression for adolescents participating in at least 1 team sport but not for adolescents with no team sport participation.

Conclusions  This study provides the first evidence of an interaction between environmental influences and specific genes on adolescent smoking and may promote an understanding of important protective relationships in the environment.

Figures in this Article

Experimentation with cigarette smoking usually begins in adolescence. Some, although not all, adolescents who experiment with cigarettes will progress to a regular smoking habit.14 A critical question is why do some adolescents progress to a regular smoking habit and others do not progress beyond experimentation?

Environmental or behavioral factors, such as physical activity, seem to account for some of the variability in adolescent smoking progression. More physically active adolescents are less likely to smoke58 and are half as likely to initiate smoking or to progress along the uptake continuum.9 Furthermore, adolescents with decreasing or erratic team sport participation patterns are almost 3 times more likely to become regular smokers than adolescents with consistently high team sport participation.10 These findings suggest that physical activity may be protective against adolescent smoking.

Individual differences in genetic susceptibility may also account, in part, for the variability in adolescent smoking progression. The heritability of smoking initiation and persistence has been well documented1114 and may be explained, in part, by genetic variation in the dopamine pathway.15 For example, studies have linked smoking behavior in adults with polymorphisms in the dopamine D2 receptor gene (DRD2)1618 and the dopamine reuptake transporter gene (SLC6A3).19,20 There has been little research to evaluate specific genetic contributions to smoking acquisition in adolescents. A recent study21 found that adolescents were almost 2 times more likely to progress to smoking for every DRD2-A1 allele present and that this effect was accentuated by depression symptoms.

Twin studies indicate that the heritability of smoking can vary by environmental factors. For example, the importance of genetic effects on the risk of smoking initiation tends to be greater for males vs females,22,23 whereas the genetic effects on the risk of becoming a smoker are greater for older vs younger adolescents.24 Although studies have evaluated differences in the heritability of smoking based on environmental factors, to date, to our knowledge, no studies have evaluated the effects of interactions between the environment and specific genetic polymorphisms on smoking.

Although not yet investigated, sports participation may buffer the effects of genetic predisposition on smoking progression in adolescents. Evidence from animal models suggests that brain dopamine concentrations are increased as a function of exercise,2528 but more research in humans is needed.29 Increases in dopamine levels caused by other behaviors, including physical activity and food intake, may be similar to smoking-associated increases in dopamine levels.3033 The ability of these behaviors to increase dopamine levels may make them substitutable. This may partially explain why physical activity decreases nicotine withdrawal symptoms and bolsters smoking cessation rates3436 and why food reward and food intake increase after smoking cessation.37,38 Although the notion of substituting one rewarding behavior for another lends itself to the investigation of protective gene-environment interactions, there has been a lack of attention to environmental or behavioral factors that may buffer the effects of genes on smoking acquisition. Evaluating protective gene-environment interactions may inform the next generation of adolescent smoking prevention and intervention efforts.3941

The present study sought to elucidate the interaction between behavioral and genetic influences on adolescent smoking. This study evaluated whether team sport participation interacted with polymorphisms in both SLC6A3 and DRD2 to affect adolescent smoking progression. We chose to investigate the role of these 2 dopamine genotypes on adolescent smoking acquisition because they have received the most attention in adult smoking practices.42 We hypothesized that team sport participation would buffer the effects of having 1 or 2 smoking risk genotypes on adolescent smoking progression (vs having no risk genotypes) and that physical activity would be the mechanism explaining the buffering effect (ie, moderated-mediated effect).

STUDY POPULATION

Participants consisted of 361 students in 9th grade of European ancestry who were enrolled in 1 of 5 public high schools in Virginia. These adolescents participated in a longitudinal cohort study of biobehavioral determinants of adolescent health habits. Of these 361 adolescents, 177 (49%) were male and 184 (51%) were female. This sample is a subset of a larger cohort that was drawn from 2393 students identified through class rosters at the beginning of 9th grade. Students were ineligible to participate if they had a special classroom placement. The cohort was formed in the 9th grade and was followed until the end of the 12th grade.

Based on the cohort selection criteria, a total of 2120 students (89%) were eligible to participate. The parents of 1533 students (72%) provided a response. Of these 1533 parents, 1151 (75%) consented to their teen's participation in the study, yielding an overall consent rate of 54%. An analysis of differences between parents who consented and those who did not consent to their teen's participation in the study revealed a race  × education interaction. The interaction indicated that the likelihood of consent was significantly greater for white parents with more than a high school education than for those with a high school education or less (89% vs 77%).43

Participation in the study also required student assent. Fifteen students declined participation. An additional 13 students did not participate in the baseline administration owing to absence. The final baseline sample size (year 2000) was 1123 of the 2120 eligible students. The rates of participation at the 3 spring follow-ups in the 10th (2001), 11th (2002), and 12th (2003) grades were approximately 96% (n = 1081), 93% (n = 1043), and 89% (n = 1005), respectively. The Georgetown University and University of Pennsylvania institutional review boards approved the study protocol.

To limit potential bias due to ethnic admixture, the analyses were limited to adolescents of European ancestry (n = 714). Of the 714 adolescents, 413 had at least 1 puff of a cigarette. We included only those adolescents who had at least 1 puff of a cigarette because never smokers would not have had the opportunity for the genetic predisposition to nicotine reward to be expressed.4446 Separating never smokers from those who have smoked has been considered an important step in refining smoking phenotypes.47 Fifteen adolescents with rare SLC6A3 alleles (ie, other than 9- or 10-repeat alleles) were excluded from the analyses. Approximately 37 adolescents had missing data on at least 1 covariate. The primary variables of interest were smoking, team sport participation, physical activity, and the SLC6A3 and DRD2 genotypes. Depression, smoking exposure, alcohol use, marijuana use, and sex served as controlling variables. The data presented herein are based on 361 adolescents of European ancestry with “all available data” (a pairwise missing data strategy used when data are missing at random that capitalizes on the data available for each wave for each participant) for these variables, although this method does not include participants with data missing on the covariates.

PROCEDURES

Data were collected on-site in a classroom common to all students. A member of the research team distributed the survey. Each student received a survey with a subject identification number. The survey contained a front page with the student's name. The front page was removed when the survey was given to the student. The completed survey contained only an identification number. A member of the research team (J.A.-M.) read aloud a set of instructions, emphasizing confidentiality to promote honest responding, and encouraged questions if survey items were not clear. Surveys took approximately 30 minutes to complete.

Biological samples were collected using buccal swabs as previously described,19,20 and DNA was extracted using standard phenol-chloroform techniques. Genotyping was performed as in previous studies.48 The assays were validated by confirming a polymorphic inheritance pattern in 7 human family lines that encompassed 3 generations (data not shown; National Institute of General Medical Sciences Human Genetic Mutant Cell Repository, Coriell Institute, Camden, NJ). Quality control procedures included positive and negative controls with each assay and independent repeated genotyping for 20% of the results. The discordant rate was less than 5%, and ambiguous or discordant results were considered missing data.

MEASURES
Smoking Status and Progression

An ordered categorical variable was generated from responses to a series of standard epidemiologic questions regarding smoking, including, “Have you ever tried or experimented with cigarette smoking, even a few puffs?” Have you smoked at least 1 whole cigarette?” “Have you smoked a cigarette in the past 30 days?” “How many cigarettes have you smoked in your lifetime?”4954

Based on participant responses to these items, adolescents were categorized as (1) never smokers (never having smoked a cigarette, not even a puff), (2) puffers (not ever having smoked a whole cigarette), (3) experimenters (smoked ≥1 whole cigarette but <100 total in a lifetime), (4) current smokers (smoked on <20 of the past 30 days and >100 cigarettes in a lifetime), and (5) frequent smokers (smoked on ≥20 of the past 30 days and >100 cigarettes in a lifetime). These categories for smoking status have been used in previous studies.9,55 The smoking progression variable was designed to capture any progression from never to frequent by assessing smoking at each wave. Adolescents who reported not smoking in the past 30 days but having more than 100 cigarettes in a lifetime were classified as experimenters (n = 2).

Genotype

Genotyping was performed as in previous studies.1921 The SLC6A3 genotype was classified as the number of 10-repeat alleles (0, 1, or 2), and the DRD2 genotype was classified as the number of A1 alleles (0, 1, or 2).16,21

Physical Activity and Team Sport Participation

Physical activity was assessed with 3 items from the Youth Risk Behavior Survey.49 These items assessed intensity, duration, and frequency of physical activity, including vigorous, moderate, and strengthening/toning activity. Physical activity was treated as a latent variable with the 3 indicators (ie, vigorous, moderate, and strengthening/toning activity). Team sport participation was assessed with 1 item from the Youth Risk Behavior Survey.49 The item requested the number of teams on which the individual played during the past 12 months.

COVARIATES

Depression symptoms were assessed using the Center for Epidemiological Studies Depression inventory at baseline.56 The 20 items on this inventory are rated along a 4-point Likert scale to indicate symptom frequency during the past week (0 = rarely or none of the time and 3 = most of the time).

Exposure to smoking from family members and peers was evaluated as in previous studies.57,58 Overall exposure was characterized as no exposure, family exposure only, peer exposure only, and both family and peer exposure.58

Past-month alcohol use was assessed with an item that asked, “During the past 30 days, on how many days did you have at least 1 drink (not just a sip) of alcohol?”49 Marijuana use was assessed with an item that asked, “During your life, how many times have you used marijuana?”49 The response options ranged from 1 (0 days or times) to 7 (≥100 days or times).

STATISTICAL ANALYSES

Univariate statistics were used to characterize the study variables, and bivariate statistics were used to create the correlation matrix. We design-coded risk genotypes with reference cell coding, with the 2 design variables representing 1 and 2 risk genotypes59; zero risk genotypes was the reference. We used latent growth curve modeling (growth modeling from a latent variable perspective60,61) to analyze for moderated and mediated effects in the longitudinal data. The latent variables represent baseline (initial level) and slope (ie, trend) and allow for the assessment of average trajectory shape (eg, linear or quadratic), developmental heterogeneity, and whether select covariates predict initial level and trends. Latent growth modeling also permits centering the level at any wave, permitting testing of the effects of covariates on a specific year's level while maintaining the longitudinal nature of the study.61 In the present study, we centered level at grade 12. Thus, our measure of smoking progression by the end of 12th grade represents the accumulation of 4 years of smoking experience in a single latent variable.61,62 To test for a team sport participation (0 vs ≥1 teams) by smoking risk–genotype interaction, we used multigroup modeling, dividing the sample by the number of team sports. Interactions occurred if differences in specific effects were significant between groups. We used a χ2 difference test to assess between-group differences.60 The mediating role of physical activity was evaluated by computing specific indirect effects, with delta method standard errors and associated z values.

Model fit was evaluated using χ2 tests, the comparative fit index (CFI), root-mean-squared error of approximation (RMSEA), and standardized root-mean-square residual (SRMR). Suggested values are a nonsignificant χ2, a CFI less than 0.95, an RMSEA less than 0.05 to 0.08 (including the upper limit of the confidence interval), and an SRMR below 0.08.6365 Finally, we evaluated the power of the results using a Monte Carlo analysis with 500 replications, using model parameter estimates resulting from our analysis as the population values. All multivariate analyses were conducted using Mplus 3.13 software.66

Of the 361 participants, 253 (70%) had no DRD2-A1 alleles (A2/A2), 94 (26%) had 1 DRD2-A1 allele (A1/A2), and 14 (4%) had 2 DRD2-A1 alleles (A1/A1). With respect to SLC6A3, 35 participants (10%) had no SLC6A3 10-repeat alleles (9/9), 127 (35%) had 1 SLC6A3 10-repeat allele (9/10), and 199 (55%) had 2 SLC6A3 10-repeat alleles (10/10). Neither the SLC6A3 nor the DRD2 alleles departed significantly from Hardy-Weinberg (HW) equilibrium (P<.08 and P<.90, respectively). The DRD2 and SLC6A3 genotype data were summarized into 3 categories of increasing risk for smoking: 107 participants (30%) had zero risk genotypes for smoking (DRD2 A2/A2 and SLC6A3 9/10 or 9/9), 200 participants (55%) had 1 risk genotype for smoking (DRD2 A2/A2 and SLC6A3 10/10 or DRD2 A1/* and SLC6A3 9/10, 9/9), and 53 participants (15%) had 2 risk genotypes for smoking (DRD2 A1/* and SLC6A3 10/10).

The average amount of physical activity per week was 3.00, which corresponded to 2 days of physical activity of at least 20 to 30 minutes' duration (SD = 1.85). The number of adolescents participating in team sports during the past 12 months was 118 on 0 teams (33%), 85 on 1 team (23%), 72 on 2 teams (20%), and 86 on 3 or more teams (24%). The mean (SD) Center for Epidemiological Studies Depression inventory score was 13.28 (9.47). Approximately 27% of the sample progressed in their smoking (any progression) during the 3-year follow-up period; 30% progressed to a regular habit (ie, current or frequent smoking).

LATENT GROWTH MODEL OF SMOKING PROGRESSION BY THE END OF GRADE 12

A 2-group latent growth model with linear and quadratic trends was fit to the data. The Figure presents the model, with standardized regression coefficients for key regression paths. To ensure proper model fit, all the factors (ie, physical activity, smoking level, and the linear and quadratic trends) were regressed on the covariates. This model fit the data well (χ271,N = 361 = 84.29, P = .13, CFI = 0.99, SRMR = 0.03, RMSEA = 0.03 [95% confidence interval, 0.00-0.06]). Three error variances were constrained to zero owing to nonsignificant negative error variances. No post hoc modifications were made to this model to improve fit. Table 1 provides the correlation matrices for both groups.

Place holder to copy figure label and caption
Figure.

Two-group latent growth model for adolescent smoking progression by the end of 12th grade. Values above the horizontal dividing line are for adolescents participating in 1 or more team sports; values below the dividing line are for adolescents with no team sport participation. Zero smoking risk genotypes, DRD2 A2/A2 and SLC6A3 9/10 or 9/9; 1 smoking risk genotype, DRD2 A1/* and SLC6A3 9/10, 9/9 or DRD2 A2/A2 and SLC6A3 10/10; and 2 smoking risk genotypes, DRD2 A1/* and SLC6A3 10/10. PA indicates physical activity; asterisk, significant within-group effect; and dagger, significant between-group effect.

Graphic Jump Location
Table Graphic Jump LocationTable 1. Bivariate Correlation for All Measured Variables in the Model by Team Sport Participation*
LONGITUDINAL ANALYSIS OF BUFFERING EFFECTS

Table 2 provides regression coefficients with standard errors and z test statistics for the effects of smoking progression by the end of 12th grade and physical activity by team sport participation. For adolescents participating in at least 1 team sport, having 1 (z = 2.69; P = .007) and 2 (z = 2.22; P = .03) risk genotypes had a positive effect on physical activity. For adolescents with no team sport participation, neither risk genotype had a significant effect on physical activity. This difference in the effect of smoking risk genotype on physical activity between the groups was significant for 1 and 2 smoking risk genotypes (χ21,N = 361 = 6.29; P = .01 and χ21,N = 361 = 3.81; P = .05, respectively). Thus, having 1 or more smoking risk genotypes was related to higher levels of physical activity for adolescents participating in at least 1 team sport but not for adolescents with no team sport participation. Physical activity, in turn, had a significant negative effect on smoking (z = −3.85; P<.001), but only for adolescents with team sport participation. This between-group difference in the effect of physical activity on smoking was significant (χ21,N = 361 = 6.73; P = .009). This result suggests that the protective effects of physical activity on smoking progression by the end of 12th grade are specific to adolescents with team sport participation.

Table Graphic Jump LocationTable 2. Linear Regression Coefficients, Standard Errors, and z Test Statistics for 361 Adolescents*

For adolescents involved in at least 1 team sport, neither smoking risk genotype had a significant direct effect on smoking (P>.10); the effect was indirect through physical activity. The indirect effect of 1 and 2 smoking risk genotypes on smoking progression through physical activity was significant (1 risk genotype: z = −2.20; P = .03 and 2 risk genotypes: z = −1.94; P = .05). There was not a significant indirect effect of 1 and 2 smoking risk genotypes on smoking progression through physical activity for adolescents without team sport participation, although a direct effect approached significance (z = 1.75; P = .08 and z = 1.67; P = .09, respectively), indicating an increased risk of smoking progression by the end of 12th grade for adolescents with 1 and 2 risk genotypes.

Thus, having 1 or more smoking risk genotypes was related to higher levels of physical activity, which, in turn, was related to lower levels of smoking progression by the end of 12th grade for adolescents participating in at least 1 team sport but not for adolescents with no team sport participation.

STATISTICAL POWER TO DETECT EFFECTS

To test the statistical power of these results, we ran a Monte Carlo analysis based on the results of the 2-group latent growth model. Monte Carlo analyses assess the power of a sample to detect specific effects based on repeated samplings from a population with known parameters.67 In the present case, the population parameters were those resulting from our analysis, and the population size was 361 adolescents. For the effect of physical activity on smoking in the group of adolescents participating in 1 or more team sports, the power was 0.99. For the effect of 1 and 2 smoking risk genotypes on physical activity in the same group, the power was 0.75 and 0.66, respectively.

ANALYSIS OF POPULATION SUBSTRUCTURE

The sample was examined for evidence of population stratification using the STRUCTURE program.68 STRUCTURE is a clustering program that uses genotypes that may be out of HW equilibrium overall and that attempts to identify subpopulations that are at HW equilibrium internally. Based on the hypothesis that the sample population was not 1 population but 2 subpopulations, the program attempted to classify individuals as belonging to one population or the other using class probabilities. A stratified population would separate into a bimodal distribution of assignment probabilities, with values close to 0 or 1. Data for the analysis were genotypes of 42 randomly selected biallelic single-nucleotide polymorphisms (list available on request).

We tested HW equilibrium for each of the 42 single nucleotide polymorphisms using the GENHW routine in Stata (StataCorp, College Station, Tex). The routine generates a χ2 value for each genotype. Our 42 random single nucleotide polymorphisms were at HW equilibrium. Results from the STRUCTURE program indicated a single population, as the probability of assignment to a subpopulation was clearly not bimodal. Having determined ahead of time to attempt to identify 2 subpopulations, the average probability of assignment to subpopulation 1 was 0.500, with the entire range of assignment probabilities from 0.476 to 0.527.

The present study provides the first evidence of interacting effects of environmental influences with specific genetic variants on adolescent smoking progression. Among adolescents participating in at least 1 team sport, having 1 or 2 smoking risk genotypes was related to higher levels of physical activity, which, in turn, was related to lower levels of smoking progression by the end of 12th grade. These effects were not present for adolescents with no team sport participation. Thus, team sport participation buffered the impact of smoking risk genotypes on adolescent smoking progression. The protective effects can be explained, in part, by the physical activity associated with team sport participation.

The interacting effects of genetic predisposition and team sport participation on adolescent smoking progression may be best explained in the context of the existing neurobiological research. The A1 allele of the DRD2 gene has been associated with altered receptor density and binding characteristics and thus less endogenous dopamine.6971 The 10-repeat allele of SLC6A3 has also been associated with greater gene expression72 and greater dopamine transporter reuptake protein levels, which results in greater clearance and less bioavailability of dopamine.73 Thus, it is possible that adolescents who carry the A1 allele of the DRD2 gene or the 10-repeat allele of the SLC6A3 gene may achieve greater reward from nicotine's effects on dopamine activity because they have less dopamine activity. Greater reward from the nicotine in cigarettes may promote further experimentation and progression to regular smoking. Consistent with this hypothesis are findings indicating that individuals with both the SLC6A3-9 and the DRD2 A2 genotypes are significantly less likely to be smokers,19 and if they do smoke to have higher smoking abstinence rates and longer latency to smoking relapse.74

Evidence from animal models suggests that similar to nicotine in cigarettes, exercise increases brain dopamine concentrations and DRD2 receptor binding,2528,75,76 which may help explain the reinforcing aspects of physical activity and why it may be protective against smoking progression. Research with humans has implicated the DRD2 gene with annual levels of physical activity in women.77 It is possible, as found in the present study, that specific genetic effects on smoking may also impact physical activity. A recent study78 of adult male twins found that physical activity and smoking shared a common genetic component.

There are 2 possible explanations for the finding that team sport participation protects adolescents with 1 and 2 risk genotypes from progressing in their smoking. One mechanism, physical activity, was evaluated in the present study. This biologically based explanation suggests that the physical activity involved in team sport, or the physical activity habits of those involved in team sport, may increase dopamine levels in the brains of adolescents with genotypes associated with less available dopamine. Thus, the physical activity may provide a reward and make smoking less rewarding, or it may reduce the need for alternative methods to increase dopamine levels, such as smoking. The model evaluating physical activity as a mechanism accounted for 37% of the variance in smoking progression by the end of 12th grade, which suggests that there are other mechanisms that explain this relationship.

A more socially based explanation is that team sport participation has a component of social reinforcement derived from coaches and teammates. In addition, there are behavioral norms and rules for the athletic subculture (ie, athletes do not smoke and smoking is inconsistent with athletic performance) to which an adolescent may conform. These norms may also decrease smoking among teammates, which may protect against peer smoking influences.79,80 These social influences may offset the genetic propensity to smoke. Both of these explanations are consistent with research showing that erratic and declining team sport participation is associated with the adoption of a regular smoking habit.10

Regarding adolescent smoking prevention, almost 25% of adolescents are regular smokers, and smoking prevalence increases across adolescence.3,4 Whereas smoking prevalence increases, physical activity and team sport involvement decreases across adolescence. In fact, research has consistently shown that levels of physical activity from all sources, including team sports, declines 26% to 37% during adolescence and that physical inactivity tracks into adulthood.8,10,8186 Almost 20% of adolescents have both the DRD2 A1/* and SLC6A3 10/10 smoking risk genotypes, and at least 30% have 1 of these smoking risk genotypes. Thus, a significant subset of adolescents who would probably progress to a regular smoking habit could avoid the acquisition of a smoking habit through involvement in team sports, even 1 team sport a year. Successful adolescent smoking prevention efforts may focus on helping adolescents identify team sports to participate in and promoting consistent participation.

As the first investigation of the interacting effects of environmental factors and specific genes on adolescent smoking progression, this study has strengths and weaknesses. Strengths include the collection of DNA and behavioral data from a large sample of adolescents, the use of more refined longitudinal smoking phenotypes, and analysis of the potentially biasing effects of ethnic admixture as an alternative explanation for the study findings.15,45,87,88 Disparate findings regarding the neurobiological features of DRD2 and SLC6A3 or their association with smoking phenotypes in adults20,8994 may be related, in part, to these methodological factors. It is important to point out that the functional significance of the 2 polymorphisms evaluated in the present study is not known. Thus, these polymorphisms may be in linkage disequilibrium with other functional variants, or it may be that variants downstream of the DRD2 and SLC6A3 loci could be affected by these polymorphisms.95

One potential limitation of this study is the parental consent rate for adolescent participation. Seventy-five percent of parents who responded provided consent, and the differences between those who provided consent and those who declined were relatively small and few.43 However, some caution is warranted in generalizing the results of this study. Although the sample may not be representative of all adolescents in the United States, the sample is nationally and locally representative on basic demographic characteristics,9698 and the sample smoking rates are regionally and locally comparable with those found in national surveys. For example, data from our 2003 survey indicated that 10% are daily smokers compared with approximately 9% in the 2003 Youth Risk Behavior Survey and approximately 15% in the 2003 Monitoring the Future Survey.3,4,98 In addition, 15% of the adolescents in our sample were current smokers compared with 13% in the 2003 Youth Risk Behavior Survey.

Another potential limitation is that an unmeasured factor associated with team sport participation and smoking accounted for the genotype interaction. Although we controlled for several key variables that could account for this association (eg, depression, family and peer smoking, alcohol use, and marijuana use), we cannot assume that another variable that we did not control for explained the interaction. Finally, there were insufficient numbers of adolescents in other racial or ethnic groups (eg, African American, Asian American, and Hispanic) to conduct analyses stratified by race.

Despite these potential limitations, the present study provides the first evidence of an interaction between environmental influences and specific genes on adolescent smoking acquisition. Although replication of these findings is necessary, these results, coupled with previous research,9,10 provide more support for the role of team sport participation and physical activity in adolescent smoking prevention and may provide an increased understanding of why these behaviors may be protective.

Future research may include investigation of the social factors important to the buffering effect of team sport participation on the impact of genes on adolescent smoking progression. Furthermore, positron emission tomography studies of the immediate impact of physical activity on dopamine release in the brain that consider the role of habitual activity and smoking status/history on this relationship are also warranted.25,2729,99 Because adolescent smoking often results in long-term smoking in adulthood, the medical and economic impact of preventing and reducing youth smoking could be significant.

Correspondence: Janet Audrain-McGovern, PhD, Department of Psychiatry, University of Pennsylvania, 3535 Market St, Suite 4100, Philadelphia, PA 19104 (audrain@mail.med.upenn.edu).

Submitted for Publication: May 20, 2005; final revision received October 5, 2005; accepted October 25, 2005.

Funding/Support: This study was supported by Transdisciplinary Tobacco Use Research Center grant P50 84718 from the National Cancer Institute and the National Institute on Drug Abuse, Bethesda, Md.

USDHHS, Preventing tobacco use among young people: a report of the Surgeon General. MMWR Recomm Rep 1994;43 ((RR-4)) 1- 10
Chassin  LPresson  CCRose  JSSherman  SJ The natural history of cigarette smoking from adolescence to adulthood: demographic predictors of continuity and change. Health Psychol 1996;15478- 484
PubMed Link to Article
Centers for Disease Control and Prevention, Surveillance summaries. MMWR Surveill Summ 2004;53 ((SS-2))
Johnston  LDO'Malley  PMBachman  JGSchulenberg  JE Monitoring the Future: National Results on Adolescent Drug Use: Overview of Key Findings, 2003.  Bethesda, Md National Institution on Drug Abuse2004;NIH publication 04-5506
Pate  RRHeath  GWDowda  MTrost  SG Association between physical activity and other health behaviors in a representative sample of U.S. adolescents. Am J Public Health 1996;861577- 1581
PubMed Link to Article
Thorlindsson  TVilhjalmsson  R Factors related to cigarette smoking and alcohol use among adolescents. Adolescence 1991;26399- 418
PubMed
Abrams  KSkolnik  NDiamond  JJ Patterns and correlates of tobacco use among suburban Philadelphia 6th- through 12th-grade students. Fam Med 1999;31128- 132
PubMed
Raitakari  OTPorkka  KVTaimela  STelama  RRasanen  LViikari  JS Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults: the Cardiovascular Risk in Young Finns Study. Am J Epidemiol 1994;140195- 205
PubMed
Audrain-McGovern  JRodriguez  DMoss  HB Smoking progression and physical activity. Cancer Epidemiol Biomarkers Prev 2003;12(11, pt1)1121- 1129
PubMed
Rodriguez  DAudrain-McGovern  J Team sport participation and smoking: analysis with general growth mixture modeling. J Pediatr Psychol 2004;29299- 308
PubMed Link to Article
Heath  ACMartin  NG Genetic models for the natural history of smoking: evidence for a genetic influence on smoking persistence. Addict Behav 1993;1819- 34
PubMed Link to Article
Heath  ACKirk  KMMeyer  JMMartin  NG Genetic and social determinants of initiation and age at onset of smoking in Australian twins. Behav Genet 1999;29395- 407
PubMed Link to Article
Kendler  KSNeale  MCSullivan  PCorey  LAGardner  COPrescott  CA A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med 1999;29299- 308
PubMed Link to Article
Madden  PAHeath  ACPedersen  NLKaprio  JKoskenvuo  MJMartin  NG The genetics of smoking persistance in men and women: a multicultural study. Behav Genet 1999;29423- 431
PubMed Link to Article
Lerman  CBerrettini  W Elucidating the role of genetic factors in smoking behavior and nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 2003;11848- 54
Link to Article
Comings  DEFerry  LBradshaw-Robinson  SBurchette  RChiu  CMuhleman  D The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996;673- 79
PubMed Link to Article
Noble  EPSt Jeor  STRitchie  TSyndulko  KSt Jeor  SCFitch  RJBrunner  RLSparkes  RS D2 dopamine receptor gene and cigarette smoking: a reward gene? Med Hypotheses 1994;42257- 260
PubMed Link to Article
Spitz  MRShi  HYang  FHudmon  KSJiang  HChanberlain  RMAmos  CIWan  YCinciripini  PHong  WKWu  X Case-control study of the D2 dopamine receptor gene and smoking status in lung cancer patients. J Natl Cancer Inst 1998;90358- 363
PubMed Link to Article
Lerman  CAudrain  JMain  DBoyd  NCaporaso  NBowman  ELockshin  BBoyd  NRShields  PG Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 1999;1814- 20
PubMed Link to Article
Sabol  SZNelson  MLFisher  CGunzerath  LBrody  CLHu  SSirota  LAMarcus  SEGreenberg  BDLucas  FR  4thBenjamin  JMurphy  DLHamer  DH A genetic association for cigarette smoking behavior. Health Psychol 1999;187- 13
PubMed Link to Article
Audrain-McGovern  JLerman  CWileyto  EPRodriguez  DShields  PG Interacting effects of genetic predisposition and depression on adolescent smoking progression. Am J Psychiatry 2004;1611224- 1230
PubMed Link to Article
Han  CMcGue  MKIacono  WG Lifetime tobacco, alcohol and other substance use in adolescent Minnesota twins: univariate and multivariate behavioral genetic analyses. Addiction 1999;94981- 993
PubMed Link to Article
Hopper  JLWhite  VMMacaskill  GTHill  DJClifford  CA Alcohol use, smoking habits and the Adult Eysenck Personality Questionnaire in adolescent Australian twins [corrected] [published correction appears in Acta Genet Med Gemellol (Roma). 1992;41:311-324]. Acta Genet Med Gemellol (Roma) 1992;41311- 324
PubMed
Koopmans  JRvan Doornen  LJBoomsma  DI Association between alcohol use and smoking in adolescent and young adult twins: a bivariate genetic analysis. Alcohol Clin Exp Res 1997;21537- 546
PubMed
Meeusen  RSmolders  ISarre  Sde Meirleir  KKeizer  HSerneels  MEbinger  GMichotte  Y Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiol Scand 1997;159335- 341
PubMed Link to Article
Sutoo  DEAkiyama  K The mechanism by which exercise modifies brain function. Physiol Behav 1996;60177- 181
PubMed Link to Article
Wilson  WMMarsden  CA Extracellular dopamine in the nucleus accumbens of the rat during treadmill running. Acta Physiol Scand 1995;155465- 466
PubMed Link to Article
Hattori  SNaoi  MNishino  H Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res Bull 1994;3541- 49
PubMed Link to Article
Wang  GJVolkow  NDFowler  JSFranceschi  DLogan  JPappas  NRWong  CTNetusil  N PET studies of the effects of aerobic exercise on human striatal dopamine release. J Nucl Med 2000;411352- 1356
PubMed
Brody  ALOlmstead  RELondon  EDFarahi  JMeyer  JHGrossman  PLee  GSHuang  JHahn  ELMandelkern  MA Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004;1611211- 1218
PubMed Link to Article
Wang  GJVolkow  NDThanos  PKFowler  JS Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 2004;2339- 53
PubMed Link to Article
Wang  GJVolkow  NDFowler  JS The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002;6601- 609
PubMed Link to Article
Wang  GJVolkow  NDLogan  JPappas  NRWong  CTZhu  WNetusil  NFowler  JS Brain dopamine and obesity. Lancet 2001;357354- 357
PubMed Link to Article
Marcus  BHAlbrecht  AEKing  TKParisi  AFPinto  BMRoberts  MNiaura  RSAbrams  DB The efficacy of exercise as an aid for smoking cessation in women: a randomized controlled trial. Arch Intern Med 1999;1591229- 1234
PubMed Link to Article
Ussher  MNunziata  PCropley  MWest  R Effect of a short bout of exercise on tobacco withdrawal symptoms and desire to smoke. Psychopharmacology (Berl) 2001;15866- 72
PubMed Link to Article
Daniel  JCropley  MUssher  MWest  R Acute effects of a short bout of moderate versus light intensity exercise versus inactivity on tobacco withdrawal symptoms in sedentary smokers. Psychopharmacology (Berl) 2004;174320- 326
PubMed Link to Article
Lerman  CBerrettini  WPinto  APatterson  FCrystal-Mansour  SWileyto  EPRestine  SLLeonard  DGShields  PGEpstein  LH Changes in food reward following smoking cessation: a pharmacogenetic investigation. Psychopharmacology (Berl) 2004;174571- 577
PubMed Link to Article
Epstein  LHWright  SMPaluch  RALeddy  JJHawk  LW  JrJaroni  JLSaad  FGCrystal-Mansour  SShields  PGLerman  C Relation between food reinforcement and dopamine genotypes and its effect on food intake in smokers. Am J Clin Nutr 2004;8082- 88
PubMed
Swan  GEHudmon  KSJack  LMHemberger  KCarmelli  DKhroyan  TVRing  HZHops  HAndrews  JATildesley  EMcBride  DBenowitz  NWebster  CWilhelmsen  KCFeiler  HSKoenig  BCaron  LIlles  JCheng  LS Environmental and genetic determinants of tobacco use: methodology for a multidisciplinary, longitudinal family-based investigation. Cancer Epidemiol Biomarkers Prev 2003;12994- 1005
PubMed
Swan  GE Implications of genetic epidemiology for the prevention of tobacco use. Nicotine Tob Res 1999;1 ((suppl 1)) S49- S56
PubMed Link to Article
Clayton  RRScutchfield  FDWyatt  SW Hutchinson Smoking Prevention Project: a new gold standard in prevention science requires new transdisciplinary thinking. J Natl Cancer Inst 2000;921964- 1965
PubMed Link to Article
Munafo  MClark  TJohnstone  EMurphy  MWalton  R The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine Tob Res 2004;6583- 597
PubMed Link to Article
Audrain  JTercyak  KPGoldman  PBush  A Recruiting adolescents into genetic studies of smoking behavior. Cancer Epidemiol Biomarkers Prev 2002;11249- 252
PubMed
Kozlowski  LT Rehabilitating a genetic perspective in the study of tobacco and alcohol use. Br J Addict 1991;86517- 520
PubMed Link to Article
Vandenbergh  DJBennett  CGrant  MStrasser  AO'Connor  RStauffer  RVogler  GPKozlowski  LT Smoking status and the human dopamine transporter variable number of tandem repeats (VNTR) polymorphism: failure to replicate and finding that never-smokers may be different. Nicotine Tob Res 2002;4333- 340
PubMed Link to Article
Kozlowski  LTHarford  MR On the significance of never using a drug: an example from cigarette smoking. J Abnorm Psychol 1976;85433- 434
PubMed Link to Article
Vandenbergh  DJKozlowski  LTBennett  CJGrant  MDStrasser  AAO'Connor  RStauffer  RLVogler  GP DAT's not all, but it may be more than we realize [comment]. Nicotine Tob Res 2002;4251- 252
PubMed Link to Article
Harty  LCCaporaso  NEHayes  RBWinn  DMBravo-Otero  EBlot  WJKleinman  DVBrown  LMArmenian  HKFraumeni  JF  JrShields  PG Alcohol dehydrogenase 3 genotype and risk of oral cavity and pharyngeal cancers. J Natl Cancer Inst 1997;891698- 1705
PubMed Link to Article
Grunbaum  JAKann  LKinchen  SRoss  JHawkins  JLowry  RHarris  WAMcManus  TChyen  DCollins  J Youth risk behavior surveillance–United States, 2003. MMWR Surveill Summ 2004;531- 96
PubMed
Mayhew  KPFlay  BRMott  JA Stages in the development of adolescent smoking. Drug Alcohol Depend 2000;59S61- S81
PubMed Link to Article
Brener  NDCollins  JLKann  LWarren  CWWilliams  BI Reliability of the Youth Risk Behavior Survey Questionnaire. Am J Epidemiol 1995;141575- 580
PubMed
Brener  NDKann  LMcManus  TKinchen  SASundberg  ECRoss  JG Reliability of the 1999 Youth Risk Behavior Survey questionnaire. J Adolesc Health 2002;31336- 342
PubMed Link to Article
Patrick  DLCheadle  AThompson  DCDiehr  PKoepsell  TKinne  S The validity of self-reported smoking: a review and meta-analysis. Am J Public Health 1994;841086- 1093
PubMed Link to Article
Botvin  GJBotvin  EM Adolescent tobacco, alcohol, and drug abuse: prevention strategies, empirical findings, and assessment issues. J Dev Behav Pediatr 1992;13290- 301
PubMed Link to Article
Audrain-McGovern  JRodriguez  DTercyak  KPCuevas  JRodgers  KPatterson  F Identifying and characterizing adolescent smoking trajectories. Cancer Epidemiol Biomarkers Prev 2004;132023- 2034
PubMed
Radloff  LS The CES-D Scale: a new self-report depression scale for research in the general population. Appl Psychol Meas 1977;1385- 401
Link to Article
Conrad  KMFlay  BRHill  D Why children start smoking cigarettes: predictors of onset. Br J Addict 1992;871711- 1724
PubMed Link to Article
Choi  WSPierce  JPGilpin  EAFarkas  AJBerry  CC Which adolescent experimenters progress to established smoking in the United States. Am J Prev Med 1997;13385- 391
PubMed
Hosmer  DWLemeshow  S Applied Logistic Regression. 2nd New York, NY John Wiley & Sons Inc2000;
Duncan  TEDuncan  SCStrycker  LALi  FAlpert  A An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications.  Mahwah, NJ Lawrence Erlbaum Associates1999;
Muthén  BO Methodological issues in random coefficient growth modeling using a latent variable framework: applications to the development of heavy drinking ages 18-37. In:Rose  JSPresson  CCSherman  SJeds.Multivariate Applications in Substance Use Research. Mahwah, NJ Lawrence Erlbaum Associates2000;113- 140
Muthén  BO Beyond SEM: general latent variable modeling. Behaviormetrika 2002;2981- 117
Link to Article
Loehlin  JC Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis  Mahwah, NJ Lawrence Erlbaum Associates2004;
Hu  LBentler  PM Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives Structural Equation Modeling 1999;61- 55
Link to Article
Muthén  LKMuthén  BO Mplus User's Guide.  Los Angeles, Calif Muthén & Muthén2001;
Muthén  LKMuthén  BO Mplus User's Guide. 3rd Los Angeles, Calif Muthén & Muthén2004;
Muthén  BOMuthén  LK How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling 2002;4599- 620
Link to Article
Pritchard  JKStephens  MDonnelly  P Inference of population structure using multilocus genotype data. Genetics 2000;155945- 959
PubMed
Thompson  JThomas  NSingleton  APiggott  MLloyd  SPerry  EKFerrier  INCourt  JA D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997;7479- 484
PubMed Link to Article
Ritchie  TNoble  EP [3H]naloxone binding in the human brain: alcoholism and the TaqI A D2 dopamine receptor polymorphism. Brain Res 1996;718193- 197
PubMed Link to Article
Noble  EPBlum  KRitchie  TMontgomery  ASheridan  PJ Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 1991;48648- 654
PubMed Link to Article
Fuke  SSuo  STakahashi  NKoike  HSasagawa  NIshiura  S The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 2001;1152- 156
Link to Article
Heinz  AGoldman  DJones  DPalmour  RHommer  DGorey  JLee  KSLinnoila  MWeinberger  DR Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000;22133- 139
PubMed Link to Article
Lerman  CShields  PGWileyto  EPAudrain  JHawk  LH  JrPinto  AKucharski  SKrishnan  SNiaura  REpstein  LH Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol 2003;22541- 548
PubMed Link to Article
Mazzeo  RS Catecholamine responses to acute and chronic exercise. Med Sci Sports Exerc 1991;23839- 845
PubMed Link to Article
MacRae  PGSpirduso  WWCartee  GDFarrar  RPWilcox  RE Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci Lett 1987;79138- 144
PubMed Link to Article
Simonen  RLRankinen  TPerusse  LLeon  ASSkinner  JSWilmore  JHRao  DCBouchard  C A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav 2003;78751- 757
PubMed Link to Article
Simonen  RLevalahti  EKaprio  JVideman  TBattie  MC Multivariate genetic analysis of lifetime exercise and environmental factors. Med Sci Sports Exerc 2004;361559- 1566
PubMed
Melnick  MJMiller  KESabo  DFFarrell  MPBarnes  GM Tobacco use among high school athletes and nonathletes: results of the 1997 Youth Risk Behavior Survey. Adolescence 2001;36727- 747
PubMed
Audrain-McGovern  JRodriguez  DTercyak  KNeuner  GMoss  HB The impact of self-control indices on peer smoking and adolescent smoking progression. J Pediatr Psychol 2006;31139- 151
Link to Article
Dovey  SMReeder  AIChalmers  DJ Continuity and change in sporting and leisure time physical activities during adolescence. Br J Sports Med 1998;3253- 57
PubMed Link to Article
Boreham  CTwisk  Jvan Mechelen  WSavage  MStrain  JCran  G Relationships between the development of biological risk factors for coronary heart disease and lifestyle parameters during adolescence: the Northern Ireland Young Hearts Project. Public Health 1999;1137- 12
PubMed
van Mechelen  WTwisk  JWPost  GBSnel  JKemper  HC Physical activity of young people: the Amsterdam Longitudinal Growth and Health Study. Med Sci Sports Exerc 2000;321610- 1616
PubMed Link to Article
Telama  RYang  X Decline of physical activity from youth to young adulthood in Finland. Med Sci Sports Exerc 2000;321617- 1622
PubMed Link to Article
Aaron  DJStorti  KLRobertson  RJKriska  AMLaPorte  RE Longitudinal study of the number and choice of leisure time physical activities from mid to late adolescence: implications for school curricula and community recreation programs. Arch Pediatr Adolesc Med 2002;1561075- 1080
PubMed Link to Article
Kimm  SYGlynn  NWKriska  AMBarton  BAKronsberg  SSDaniels  SRCrawford  PBSabry  ZILiu  K Decline in physical activity in black girls and white girls during adolescence. N Engl J Med 2002;347709- 715
PubMed Link to Article
Lerman  CSwan  G Non-replication of genetic association studies: is DAT all folks [comment]? Nicotine Tob Res 2002;4247- 249
PubMed Link to Article
Sullivan  PFEaves  LJKendler  KSNeale  MC Genetic case-control association studies in neuropsychiatry. Arch Gen Psychiatry 2001;581015- 1024
PubMed Link to Article
Jacobsen  LKStaley  JKZoghbi  SSSeibyl  JPKosten  TRInnis  RBGelernter  J Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 2000;1571700- 1703
PubMed Link to Article
Martinez  DGelernter  JAbi-Dargham  Avan Dyck  CHKegeles  LInnis  RLaruelle  M The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001;24553- 560
Link to Article
Miller  GMMadras  BK Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002;744- 55
PubMed Link to Article
Bierut  LJRice  JPEdenberg  HJGoate  AForoud  TCloninger  CRBegleiter  HConneally  PMCrowe  RRHesselbrock  VLi  TKNurnberger  JI  JrPorjesz  BSchuckit  MAReich  T Family-based study of the association of the dopamine D2 receptor gene (DRD2) with habitual smoking. Am J Med Genet 2000;90299- 302
PubMed Link to Article
Jorm  AFHenderson  ASJacomb  PAChristensen  HKorten  AERodgers  BTan  XEasteal  S Association of smoking and personality with a polymorphism of the dopamine transporter gene: results from a community survey. Am J Med Genet 2000;96331- 334
PubMed Link to Article
Laruelle  MGelernter  JInnis  RB D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene. Mol Psychiatry 1998;3261- 265
PubMed Link to Article
Neville  MJJohnstone  ECWalton  RT Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 2004;23540- 545
PubMed Link to Article
US Census Bureau, National report: 2001a. Available at:http://quickfacts.census.gov/qfd/statesAccessed August 29, 2003
US Census Bureau, State report: 2001b. Available at:http://quickfacts.census.gov/qfd/states/51/51059.htmlAccessed February 8, 2005
Developmental Research and Programs, Communities That Care: 2001 Youth Survey Report, Fairfax County, Virginia. Available at:http://www.co.fairfax.va.us/comm/demogrph/pdf/Youth2001.pdfAccessed March 3, 2002
Koepp  MJGunn  RNLawrence  ADCunningham  VJDagher  AJones  TBrooks  DJBench  CJGrasby  PM Evidence for striatal dopamine release during a video game. Nature 1998;393266- 268
PubMed Link to Article

Figures

Place holder to copy figure label and caption
Figure.

Two-group latent growth model for adolescent smoking progression by the end of 12th grade. Values above the horizontal dividing line are for adolescents participating in 1 or more team sports; values below the dividing line are for adolescents with no team sport participation. Zero smoking risk genotypes, DRD2 A2/A2 and SLC6A3 9/10 or 9/9; 1 smoking risk genotype, DRD2 A1/* and SLC6A3 9/10, 9/9 or DRD2 A2/A2 and SLC6A3 10/10; and 2 smoking risk genotypes, DRD2 A1/* and SLC6A3 10/10. PA indicates physical activity; asterisk, significant within-group effect; and dagger, significant between-group effect.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Bivariate Correlation for All Measured Variables in the Model by Team Sport Participation*
Table Graphic Jump LocationTable 2. Linear Regression Coefficients, Standard Errors, and z Test Statistics for 361 Adolescents*

References

USDHHS, Preventing tobacco use among young people: a report of the Surgeon General. MMWR Recomm Rep 1994;43 ((RR-4)) 1- 10
Chassin  LPresson  CCRose  JSSherman  SJ The natural history of cigarette smoking from adolescence to adulthood: demographic predictors of continuity and change. Health Psychol 1996;15478- 484
PubMed Link to Article
Centers for Disease Control and Prevention, Surveillance summaries. MMWR Surveill Summ 2004;53 ((SS-2))
Johnston  LDO'Malley  PMBachman  JGSchulenberg  JE Monitoring the Future: National Results on Adolescent Drug Use: Overview of Key Findings, 2003.  Bethesda, Md National Institution on Drug Abuse2004;NIH publication 04-5506
Pate  RRHeath  GWDowda  MTrost  SG Association between physical activity and other health behaviors in a representative sample of U.S. adolescents. Am J Public Health 1996;861577- 1581
PubMed Link to Article
Thorlindsson  TVilhjalmsson  R Factors related to cigarette smoking and alcohol use among adolescents. Adolescence 1991;26399- 418
PubMed
Abrams  KSkolnik  NDiamond  JJ Patterns and correlates of tobacco use among suburban Philadelphia 6th- through 12th-grade students. Fam Med 1999;31128- 132
PubMed
Raitakari  OTPorkka  KVTaimela  STelama  RRasanen  LViikari  JS Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults: the Cardiovascular Risk in Young Finns Study. Am J Epidemiol 1994;140195- 205
PubMed
Audrain-McGovern  JRodriguez  DMoss  HB Smoking progression and physical activity. Cancer Epidemiol Biomarkers Prev 2003;12(11, pt1)1121- 1129
PubMed
Rodriguez  DAudrain-McGovern  J Team sport participation and smoking: analysis with general growth mixture modeling. J Pediatr Psychol 2004;29299- 308
PubMed Link to Article
Heath  ACMartin  NG Genetic models for the natural history of smoking: evidence for a genetic influence on smoking persistence. Addict Behav 1993;1819- 34
PubMed Link to Article
Heath  ACKirk  KMMeyer  JMMartin  NG Genetic and social determinants of initiation and age at onset of smoking in Australian twins. Behav Genet 1999;29395- 407
PubMed Link to Article
Kendler  KSNeale  MCSullivan  PCorey  LAGardner  COPrescott  CA A population-based twin study in women of smoking initiation and nicotine dependence. Psychol Med 1999;29299- 308
PubMed Link to Article
Madden  PAHeath  ACPedersen  NLKaprio  JKoskenvuo  MJMartin  NG The genetics of smoking persistance in men and women: a multicultural study. Behav Genet 1999;29423- 431
PubMed Link to Article
Lerman  CBerrettini  W Elucidating the role of genetic factors in smoking behavior and nicotine dependence. Am J Med Genet B Neuropsychiatr Genet 2003;11848- 54
Link to Article
Comings  DEFerry  LBradshaw-Robinson  SBurchette  RChiu  CMuhleman  D The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996;673- 79
PubMed Link to Article
Noble  EPSt Jeor  STRitchie  TSyndulko  KSt Jeor  SCFitch  RJBrunner  RLSparkes  RS D2 dopamine receptor gene and cigarette smoking: a reward gene? Med Hypotheses 1994;42257- 260
PubMed Link to Article
Spitz  MRShi  HYang  FHudmon  KSJiang  HChanberlain  RMAmos  CIWan  YCinciripini  PHong  WKWu  X Case-control study of the D2 dopamine receptor gene and smoking status in lung cancer patients. J Natl Cancer Inst 1998;90358- 363
PubMed Link to Article
Lerman  CAudrain  JMain  DBoyd  NCaporaso  NBowman  ELockshin  BBoyd  NRShields  PG Evidence suggesting the role of specific genetic factors in cigarette smoking. Health Psychol 1999;1814- 20
PubMed Link to Article
Sabol  SZNelson  MLFisher  CGunzerath  LBrody  CLHu  SSirota  LAMarcus  SEGreenberg  BDLucas  FR  4thBenjamin  JMurphy  DLHamer  DH A genetic association for cigarette smoking behavior. Health Psychol 1999;187- 13
PubMed Link to Article
Audrain-McGovern  JLerman  CWileyto  EPRodriguez  DShields  PG Interacting effects of genetic predisposition and depression on adolescent smoking progression. Am J Psychiatry 2004;1611224- 1230
PubMed Link to Article
Han  CMcGue  MKIacono  WG Lifetime tobacco, alcohol and other substance use in adolescent Minnesota twins: univariate and multivariate behavioral genetic analyses. Addiction 1999;94981- 993
PubMed Link to Article
Hopper  JLWhite  VMMacaskill  GTHill  DJClifford  CA Alcohol use, smoking habits and the Adult Eysenck Personality Questionnaire in adolescent Australian twins [corrected] [published correction appears in Acta Genet Med Gemellol (Roma). 1992;41:311-324]. Acta Genet Med Gemellol (Roma) 1992;41311- 324
PubMed
Koopmans  JRvan Doornen  LJBoomsma  DI Association between alcohol use and smoking in adolescent and young adult twins: a bivariate genetic analysis. Alcohol Clin Exp Res 1997;21537- 546
PubMed
Meeusen  RSmolders  ISarre  Sde Meirleir  KKeizer  HSerneels  MEbinger  GMichotte  Y Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiol Scand 1997;159335- 341
PubMed Link to Article
Sutoo  DEAkiyama  K The mechanism by which exercise modifies brain function. Physiol Behav 1996;60177- 181
PubMed Link to Article
Wilson  WMMarsden  CA Extracellular dopamine in the nucleus accumbens of the rat during treadmill running. Acta Physiol Scand 1995;155465- 466
PubMed Link to Article
Hattori  SNaoi  MNishino  H Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res Bull 1994;3541- 49
PubMed Link to Article
Wang  GJVolkow  NDFowler  JSFranceschi  DLogan  JPappas  NRWong  CTNetusil  N PET studies of the effects of aerobic exercise on human striatal dopamine release. J Nucl Med 2000;411352- 1356
PubMed
Brody  ALOlmstead  RELondon  EDFarahi  JMeyer  JHGrossman  PLee  GSHuang  JHahn  ELMandelkern  MA Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004;1611211- 1218
PubMed Link to Article
Wang  GJVolkow  NDThanos  PKFowler  JS Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 2004;2339- 53
PubMed Link to Article
Wang  GJVolkow  NDFowler  JS The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002;6601- 609
PubMed Link to Article
Wang  GJVolkow  NDLogan  JPappas  NRWong  CTZhu  WNetusil  NFowler  JS Brain dopamine and obesity. Lancet 2001;357354- 357
PubMed Link to Article
Marcus  BHAlbrecht  AEKing  TKParisi  AFPinto  BMRoberts  MNiaura  RSAbrams  DB The efficacy of exercise as an aid for smoking cessation in women: a randomized controlled trial. Arch Intern Med 1999;1591229- 1234
PubMed Link to Article
Ussher  MNunziata  PCropley  MWest  R Effect of a short bout of exercise on tobacco withdrawal symptoms and desire to smoke. Psychopharmacology (Berl) 2001;15866- 72
PubMed Link to Article
Daniel  JCropley  MUssher  MWest  R Acute effects of a short bout of moderate versus light intensity exercise versus inactivity on tobacco withdrawal symptoms in sedentary smokers. Psychopharmacology (Berl) 2004;174320- 326
PubMed Link to Article
Lerman  CBerrettini  WPinto  APatterson  FCrystal-Mansour  SWileyto  EPRestine  SLLeonard  DGShields  PGEpstein  LH Changes in food reward following smoking cessation: a pharmacogenetic investigation. Psychopharmacology (Berl) 2004;174571- 577
PubMed Link to Article
Epstein  LHWright  SMPaluch  RALeddy  JJHawk  LW  JrJaroni  JLSaad  FGCrystal-Mansour  SShields  PGLerman  C Relation between food reinforcement and dopamine genotypes and its effect on food intake in smokers. Am J Clin Nutr 2004;8082- 88
PubMed
Swan  GEHudmon  KSJack  LMHemberger  KCarmelli  DKhroyan  TVRing  HZHops  HAndrews  JATildesley  EMcBride  DBenowitz  NWebster  CWilhelmsen  KCFeiler  HSKoenig  BCaron  LIlles  JCheng  LS Environmental and genetic determinants of tobacco use: methodology for a multidisciplinary, longitudinal family-based investigation. Cancer Epidemiol Biomarkers Prev 2003;12994- 1005
PubMed
Swan  GE Implications of genetic epidemiology for the prevention of tobacco use. Nicotine Tob Res 1999;1 ((suppl 1)) S49- S56
PubMed Link to Article
Clayton  RRScutchfield  FDWyatt  SW Hutchinson Smoking Prevention Project: a new gold standard in prevention science requires new transdisciplinary thinking. J Natl Cancer Inst 2000;921964- 1965
PubMed Link to Article
Munafo  MClark  TJohnstone  EMurphy  MWalton  R The genetic basis for smoking behavior: a systematic review and meta-analysis. Nicotine Tob Res 2004;6583- 597
PubMed Link to Article
Audrain  JTercyak  KPGoldman  PBush  A Recruiting adolescents into genetic studies of smoking behavior. Cancer Epidemiol Biomarkers Prev 2002;11249- 252
PubMed
Kozlowski  LT Rehabilitating a genetic perspective in the study of tobacco and alcohol use. Br J Addict 1991;86517- 520
PubMed Link to Article
Vandenbergh  DJBennett  CGrant  MStrasser  AO'Connor  RStauffer  RVogler  GPKozlowski  LT Smoking status and the human dopamine transporter variable number of tandem repeats (VNTR) polymorphism: failure to replicate and finding that never-smokers may be different. Nicotine Tob Res 2002;4333- 340
PubMed Link to Article
Kozlowski  LTHarford  MR On the significance of never using a drug: an example from cigarette smoking. J Abnorm Psychol 1976;85433- 434
PubMed Link to Article
Vandenbergh  DJKozlowski  LTBennett  CJGrant  MDStrasser  AAO'Connor  RStauffer  RLVogler  GP DAT's not all, but it may be more than we realize [comment]. Nicotine Tob Res 2002;4251- 252
PubMed Link to Article
Harty  LCCaporaso  NEHayes  RBWinn  DMBravo-Otero  EBlot  WJKleinman  DVBrown  LMArmenian  HKFraumeni  JF  JrShields  PG Alcohol dehydrogenase 3 genotype and risk of oral cavity and pharyngeal cancers. J Natl Cancer Inst 1997;891698- 1705
PubMed Link to Article
Grunbaum  JAKann  LKinchen  SRoss  JHawkins  JLowry  RHarris  WAMcManus  TChyen  DCollins  J Youth risk behavior surveillance–United States, 2003. MMWR Surveill Summ 2004;531- 96
PubMed
Mayhew  KPFlay  BRMott  JA Stages in the development of adolescent smoking. Drug Alcohol Depend 2000;59S61- S81
PubMed Link to Article
Brener  NDCollins  JLKann  LWarren  CWWilliams  BI Reliability of the Youth Risk Behavior Survey Questionnaire. Am J Epidemiol 1995;141575- 580
PubMed
Brener  NDKann  LMcManus  TKinchen  SASundberg  ECRoss  JG Reliability of the 1999 Youth Risk Behavior Survey questionnaire. J Adolesc Health 2002;31336- 342
PubMed Link to Article
Patrick  DLCheadle  AThompson  DCDiehr  PKoepsell  TKinne  S The validity of self-reported smoking: a review and meta-analysis. Am J Public Health 1994;841086- 1093
PubMed Link to Article
Botvin  GJBotvin  EM Adolescent tobacco, alcohol, and drug abuse: prevention strategies, empirical findings, and assessment issues. J Dev Behav Pediatr 1992;13290- 301
PubMed Link to Article
Audrain-McGovern  JRodriguez  DTercyak  KPCuevas  JRodgers  KPatterson  F Identifying and characterizing adolescent smoking trajectories. Cancer Epidemiol Biomarkers Prev 2004;132023- 2034
PubMed
Radloff  LS The CES-D Scale: a new self-report depression scale for research in the general population. Appl Psychol Meas 1977;1385- 401
Link to Article
Conrad  KMFlay  BRHill  D Why children start smoking cigarettes: predictors of onset. Br J Addict 1992;871711- 1724
PubMed Link to Article
Choi  WSPierce  JPGilpin  EAFarkas  AJBerry  CC Which adolescent experimenters progress to established smoking in the United States. Am J Prev Med 1997;13385- 391
PubMed
Hosmer  DWLemeshow  S Applied Logistic Regression. 2nd New York, NY John Wiley & Sons Inc2000;
Duncan  TEDuncan  SCStrycker  LALi  FAlpert  A An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications.  Mahwah, NJ Lawrence Erlbaum Associates1999;
Muthén  BO Methodological issues in random coefficient growth modeling using a latent variable framework: applications to the development of heavy drinking ages 18-37. In:Rose  JSPresson  CCSherman  SJeds.Multivariate Applications in Substance Use Research. Mahwah, NJ Lawrence Erlbaum Associates2000;113- 140
Muthén  BO Beyond SEM: general latent variable modeling. Behaviormetrika 2002;2981- 117
Link to Article
Loehlin  JC Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis  Mahwah, NJ Lawrence Erlbaum Associates2004;
Hu  LBentler  PM Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives Structural Equation Modeling 1999;61- 55
Link to Article
Muthén  LKMuthén  BO Mplus User's Guide.  Los Angeles, Calif Muthén & Muthén2001;
Muthén  LKMuthén  BO Mplus User's Guide. 3rd Los Angeles, Calif Muthén & Muthén2004;
Muthén  BOMuthén  LK How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling 2002;4599- 620
Link to Article
Pritchard  JKStephens  MDonnelly  P Inference of population structure using multilocus genotype data. Genetics 2000;155945- 959
PubMed
Thompson  JThomas  NSingleton  APiggott  MLloyd  SPerry  EKFerrier  INCourt  JA D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997;7479- 484
PubMed Link to Article
Ritchie  TNoble  EP [3H]naloxone binding in the human brain: alcoholism and the TaqI A D2 dopamine receptor polymorphism. Brain Res 1996;718193- 197
PubMed Link to Article
Noble  EPBlum  KRitchie  TMontgomery  ASheridan  PJ Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 1991;48648- 654
PubMed Link to Article
Fuke  SSuo  STakahashi  NKoike  HSasagawa  NIshiura  S The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 2001;1152- 156
Link to Article
Heinz  AGoldman  DJones  DPalmour  RHommer  DGorey  JLee  KSLinnoila  MWeinberger  DR Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 2000;22133- 139
PubMed Link to Article
Lerman  CShields  PGWileyto  EPAudrain  JHawk  LH  JrPinto  AKucharski  SKrishnan  SNiaura  REpstein  LH Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial. Health Psychol 2003;22541- 548
PubMed Link to Article
Mazzeo  RS Catecholamine responses to acute and chronic exercise. Med Sci Sports Exerc 1991;23839- 845
PubMed Link to Article
MacRae  PGSpirduso  WWCartee  GDFarrar  RPWilcox  RE Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolite levels. Neurosci Lett 1987;79138- 144
PubMed Link to Article
Simonen  RLRankinen  TPerusse  LLeon  ASSkinner  JSWilmore  JHRao  DCBouchard  C A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav 2003;78751- 757
PubMed Link to Article
Simonen  RLevalahti  EKaprio  JVideman  TBattie  MC Multivariate genetic analysis of lifetime exercise and environmental factors. Med Sci Sports Exerc 2004;361559- 1566
PubMed
Melnick  MJMiller  KESabo  DFFarrell  MPBarnes  GM Tobacco use among high school athletes and nonathletes: results of the 1997 Youth Risk Behavior Survey. Adolescence 2001;36727- 747
PubMed
Audrain-McGovern  JRodriguez  DTercyak  KNeuner  GMoss  HB The impact of self-control indices on peer smoking and adolescent smoking progression. J Pediatr Psychol 2006;31139- 151
Link to Article
Dovey  SMReeder  AIChalmers  DJ Continuity and change in sporting and leisure time physical activities during adolescence. Br J Sports Med 1998;3253- 57
PubMed Link to Article
Boreham  CTwisk  Jvan Mechelen  WSavage  MStrain  JCran  G Relationships between the development of biological risk factors for coronary heart disease and lifestyle parameters during adolescence: the Northern Ireland Young Hearts Project. Public Health 1999;1137- 12
PubMed
van Mechelen  WTwisk  JWPost  GBSnel  JKemper  HC Physical activity of young people: the Amsterdam Longitudinal Growth and Health Study. Med Sci Sports Exerc 2000;321610- 1616
PubMed Link to Article
Telama  RYang  X Decline of physical activity from youth to young adulthood in Finland. Med Sci Sports Exerc 2000;321617- 1622
PubMed Link to Article
Aaron  DJStorti  KLRobertson  RJKriska  AMLaPorte  RE Longitudinal study of the number and choice of leisure time physical activities from mid to late adolescence: implications for school curricula and community recreation programs. Arch Pediatr Adolesc Med 2002;1561075- 1080
PubMed Link to Article
Kimm  SYGlynn  NWKriska  AMBarton  BAKronsberg  SSDaniels  SRCrawford  PBSabry  ZILiu  K Decline in physical activity in black girls and white girls during adolescence. N Engl J Med 2002;347709- 715
PubMed Link to Article
Lerman  CSwan  G Non-replication of genetic association studies: is DAT all folks [comment]? Nicotine Tob Res 2002;4247- 249
PubMed Link to Article
Sullivan  PFEaves  LJKendler  KSNeale  MC Genetic case-control association studies in neuropsychiatry. Arch Gen Psychiatry 2001;581015- 1024
PubMed Link to Article
Jacobsen  LKStaley  JKZoghbi  SSSeibyl  JPKosten  TRInnis  RBGelernter  J Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 2000;1571700- 1703
PubMed Link to Article
Martinez  DGelernter  JAbi-Dargham  Avan Dyck  CHKegeles  LInnis  RLaruelle  M The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 2001;24553- 560
Link to Article
Miller  GMMadras  BK Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002;744- 55
PubMed Link to Article
Bierut  LJRice  JPEdenberg  HJGoate  AForoud  TCloninger  CRBegleiter  HConneally  PMCrowe  RRHesselbrock  VLi  TKNurnberger  JI  JrPorjesz  BSchuckit  MAReich  T Family-based study of the association of the dopamine D2 receptor gene (DRD2) with habitual smoking. Am J Med Genet 2000;90299- 302
PubMed Link to Article
Jorm  AFHenderson  ASJacomb  PAChristensen  HKorten  AERodgers  BTan  XEasteal  S Association of smoking and personality with a polymorphism of the dopamine transporter gene: results from a community survey. Am J Med Genet 2000;96331- 334
PubMed Link to Article
Laruelle  MGelernter  JInnis  RB D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene. Mol Psychiatry 1998;3261- 265
PubMed Link to Article
Neville  MJJohnstone  ECWalton  RT Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 2004;23540- 545
PubMed Link to Article
US Census Bureau, National report: 2001a. Available at:http://quickfacts.census.gov/qfd/statesAccessed August 29, 2003
US Census Bureau, State report: 2001b. Available at:http://quickfacts.census.gov/qfd/states/51/51059.htmlAccessed February 8, 2005
Developmental Research and Programs, Communities That Care: 2001 Youth Survey Report, Fairfax County, Virginia. Available at:http://www.co.fairfax.va.us/comm/demogrph/pdf/Youth2001.pdfAccessed March 3, 2002
Koepp  MJGunn  RNLawrence  ADCunningham  VJDagher  AJones  TBrooks  DJBench  CJGrasby  PM Evidence for striatal dopamine release during a video game. Nature 1998;393266- 268
PubMed Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 25

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com