0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Article |

Increased BDNF Promoter Methylation in the Wernicke Area of Suicide Subjects FREE

Simona Keller, PhD; Marco Sarchiapone, MD; Federica Zarrilli, PhD; Alja Videtič, PhD; Angelo Ferraro, PhD; Vladimir Carli, MD, PhD; Silvana Sacchetti, PhD; Francesca Lembo, PhD; Antonella Angiolillo, PhD; Nikolina Jovanovic, MD; Francesco Pisanti, MD; Rossella Tomaiuolo, MD, PhD; Antonella Monticelli, MD; Joze Balazic, MD; Alec Roy, MD; Andrej Marusic, MD; Sergio Cocozza, MD; Alfredo Fusco, MD, PhD; Carmelo B. Bruni, MD, PhD; Giuseppe Castaldo, MD, PhD; Lorenzo Chiariotti, MD, PhD
Arch Gen Psychiatry. 2010;67(3):258-267. doi:10.1001/archgenpsychiatry.2010.9.
Text Size: A A A
Published online

Context  Brain-derived neurotrophic factor (BDNF) plays a pivotal role in the pathophysiology of suicidal behavior and BDNF levels are decreased in the brain and plasma of suicide subjects. So far, the mechanisms leading to downregulation of BDNF expression are poorly understood.

Objectives  To test the hypothesis that alterations of DNA methylation could be involved in the dysregulation of BDNF gene expression in the brain of suicide subjects.

Design  Three independent quantitative methylation techniques were performed on postmortem samples of brain tissue. BDNF messenger RNA levels were determined by quantitative real-time polymerase chain reaction.

Setting  Academic medical center.

Patients or Other Participants  Forty-four suicide completers and 33 nonsuicide control subjects of white ethnicity.

Main Outcome Measures  The DNA methylation degree at BDNF promoter IV and the genome-wide DNA methylation levels in the brain's Wernicke area.

Results  Postmortem brain samples from suicide subjects showed a statistically significant increase of DNA methylation at specific CpG sites in BDNF promoter/exon IV compared with nonsuicide control subjects (P < .001). Most of the CpG sites lying in the −300/+500 region, on both strands, had low or no methylation, with the exception of a few sites located near the transcriptional start site that had differential methylation, while genome-wide methylation levels were comparable among the subjects. The mean methylation degree at the 4 CpG sites analyzed by pyrosequencing was always less than 12.9% in the 33 nonsuicide control subjects, while in 13 of 44 suicide victims (30%), the mean methylation degree ranged between 13.1% and 34.2%. Higher methylation degree corresponded to lower BDNF messenger RNA levels.

Conclusions  BDNF promoter/exon IV is frequently hypermethylated in the Wernicke area of the postmortem brain of suicide subjects irrespective of genome-wide methylation levels, indicating that a gene-specific increase in DNA methylation could cause or contribute to the downregulation of BDNF expression in suicide subjects. The reported data reveal a novel link between epigenetic alteration in the brain and suicidal behavior.

Figures in this Article

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays a key role in the development and survival of neurons in the central nervous system.1 BDNF binds to a specific tyrosine kinase receptor (tropomyosin-related kinase B receptor [trkB]) and regulates many functions related to neuron development such as neurite outgrowth, synthesis of differentiating factors, and morphological plasticity.1 In adulthood, BDNF is involved in neural homeostasis and in processes related to neuronal plasticity and connectivity, including learning and memory,2,3 drug addiction,4 response to social stress, aggressiveness, and anxietylike behaviors.5,6 Alteration of BDNF expression in specific neurons may reduce neural plasticity, therefore impairing the ability to respond to stressors, and contributes to different neurodegenerative and neuropsychiatric disorders including depression and bipolar disorder.7 Single-nucleotide polymorphisms of the BDNF gene have also been associated, although with conflicting results, with different psychiatric conditions, including schizophrenia and suicidal behavior.810

Recent studies demonstrate that BDNF levels are decreased in the brain (prefrontal cortex and hippocampus) of suicide victims,11,12 suggesting that BDNF plays a role in the pathophysiological aspects of suicidal behavior. The expression of the human BDNF gene is controlled by a complex regulatory region, well conserved in mouse and rat,13 that includes at least 9 promoters each driving transcription of BDNF messenger RNA (mRNA) transcripts containing 1 of the nine 5′ noncoding exons.14BDNF promoter IV has been shown to be highly regulated during development, and epigenetic mechanisms play a key role in such regulation.1517 The DNA methylation state of CpG sites within mouse promoter/exon IV is correlated with the expression of BDNF in the developing mouse forebrain.15 Very interestingly, the neuronal activity-dependent activation of the BDNF gene is mediated by decreased CpG methylation of BDNF promoter IV and the release of a chromatin repressor complex containing MeCP2 methyl-binding protein.18,19 Moreover, promoter IV is the major target of chromatin changes associated with alteration of BDNF expression in mouse models of neuropsychiatric disorders.6,20 However, to our knowledge, no data on the methylation state of the BDNF gene, either in human mental illness or in suicide victims, have been reported so far.

In the present study, we quantitatively analyzed the DNA methylation degree of 4 CpG sites within the human BDNF promoter/exon IV in the postmortem brain (Wernicke area) of 44 suicide completers and 33 control subjects. We also determined the global DNA methylation state in the same samples and the BDNF mRNA levels in some samples that displayed a different BDNF methylation degree. Our results showed that DNA methylation levels at BDNF promoter IV were increased in suicide victims compared with normal control subjects, irrespective of global DNA methylation degree, and that the amount of BDNF transcript IV was lower in samples displaying a higher BDNF promoter IV methylation.

STUDY SUBJECTS

The study was performed on postmortem samples of brain tissue extracted from the Wernicke area obtained from 44 suicide completers and 33 nonsuicide control subjects. Most of the autoptic samples were collected within 12 to 26 hours of the subject's death (postmortem interval information is reported in the eTable), in the course of autopsy at the Institute of Forensic Medicine, University of Ljubljana, between 1999 and 2005, and stored at −80°C in the care of the Biological Bank of the Institut za Varovanje Zdravja, Ljubljana, Slovenia. This study was performed according to the ethical requirements of the institution. All studied subjects were of white ethnicity and all were right handed. Data on subjects' sex, age, drug history, and cause of death were gathered from the subjects' records. Data on psychiatric diagnoses were obtained from the physician's note for autopsy, and in the cases in which a coroner's inquest was done in the presence of relatives, their testimony was taken into consideration. A detailed description of the subjects analyzed in this study is reported in the eTable.

pH MEASUREMENT AND DRUG ANALYSIS

Blood was taken from the subjects to perform general toxicological screening using gas chromatography–mass spectrometry. The analysis of pH of the homogenate was performed using the automated analyzer 865 (Bayer Leverkusen, Germany, now Siemens, Malvern, Pennsylvania). A 50- to 100-mg sample of liquid nitrogen–pulverized tissue was mixed with distilled deionized water in a 10% (weight to volume ratio) solution. To confirm blood data, we also performed drug analysis on homogenates, using the REMEDI column-switching LC instrument (Bio-Rad Laboratories, Hercules, California), which detects about 700 drugs or metabolites, including most illicit substances and drugs of abuse or their direct metabolites.21

DNA AND RNA EXTRACTION FROM TISSUES

DNA and RNA were extracted, from each sample, from a portion of liquid nitrogen–pulverized tissue. DNA was prepared using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), following the instruction manual. Total RNA was extracted from tissues using TRI Reagent solution (Invitrogen, Carlsbad, California), according to the manufacturer's instructions. The integrity of the RNA was assessed by denaturing agarose gel electrophoresis (eFigure). RNA quality and quantity assessment was performed by an ND-1000 NanoDrop spectrophotometer (NanoDrop Products, Wilmington, Delaware). All samples showed a quality ratio (260:280-260:230) between 1.8 and 2.2, which is considered an optimal range.22 Negative controls were obtained by performing polymerase chain reaction (PCR) on samples that were not reverse transcribed but otherwise identically processed.

BISULFITE TREATMENT

Sodium bisulfite conversion of genomic DNA (2 μg) was obtained using Epitect Bisulphite kit (Qiagen), following the manufacturer's instructions. Amplicons used for the different methylation analyses were obtained from appropriate amounts of bisulfite-treated genomic DNA.

DNA METHYLATION ANALYSIS
Pyrosequencing

Pyrosequencing technology23 was used for DNA methylation quantitative analysis of the BDNF gene and was performed using the PSQ 96MA instrument (Biotage AB, Uppsala, Sweden), following the manufacturer's protocol. The reactions were assayed on the PSQ 96MA using the single-nucleotide polymorphism analysis software. Global DNA methylation analysis was performed using the PyroMark LINE-1 assay kit (Biotage AB), according to the manufacturer's instructions. Long interspersed nucleotide elements (LINE-1) represent about 15% of the human genome; thus, quantitative DNA methylation analysis of LINE-1 may be considered a surrogate analysis of global DNA methylation.24 Primer sequences and detailed protocol for BDNF and global methylation analysis can be found in the supplementary Methods section.

Bisulfite Genomic Sequencing (Cloning Technology)

Two microliters of each sample were used as a template in PCR reactions using the following primers: BDNF FW2 5′-gggggaggattaaTtgagTTagttTtg-3′ (position from nucleotides −358 to −332) and BDNF RV2 5′-cccatcaacRaaaaactccatttaatctc-3′ (from nucleotides +59 to +87). Amplifications and the cloning procedure were performed as previously described.25 At least 20 independent clones were sequenced to determine the methylation pattern of individual molecules.

MassARRAY Platform

The MassARRAY platform (Sequenom, San Diego, California) uses matrix-assisted laser desorption ionization–time-of-flight (MALDI-TOF) mass spectrometry in combination with RNA base–specific cleavage (MassCLEAVE; Sequenom). A detectable pattern was then analyzed for methylation status. The MassCLEAVE biochemistry was performed as previously described.26 Mass spectra were acquired by using MassARRAY Compact MALDI-TOF mass spectrometry (Sequenom) and the spectra methylation ratios were generated by EpiTYPER software (version 1.0; Sequenom). Further technical information and primer sequences can be found in the supplementary Methods section. Presence of a CpG island in the genomic region analyzed was assessed by using CGplot software (http://www.ebi.ac.uk/emboss/cpgplot/).

REAL-TIME REVERSE TRANSCRIPTION–PCR

One microgram of total RNA of each sample was reverse transcribed with the QuantiTect Reverse Transcription kit (Qiagen) using an optimized blend of oligo-dT and random primers, according to the manufacturer's instructions. Primer sequences and detailed protocol for BDNF and the internal control genes' quantitative mRNA analysis can be found in the supplementary Methods section. The strategy used for the normalization of quantitative real-time reverse transcription–PCR (RT-PCR) data was geometric averaging of multiple internal control genes according to the Vandesompele et al27 method. We evaluated 4 housekeeping genes (GAPDH, HPRT I, UBC, and RP II) that represent accurate controls for mRNA expression analysis of postmortem brain samples.2729 For each housekeeping gene, we measured the gene stability and ranked it using the geNorm algorithm.27 Stepwise exclusion of the gene with the highest gene stability value allowed ranking of the tested genes according to their expression stability. We applied to each sample the delta Ct formula for transforming Ct values to relative quantities (Q = E(minCt − sampleCt)), as described elsewhere.27 We calculated the normalization factor based on the geometric mean of quantity obtained by the transformation of Ct data. A sample (sample ID 920/04), arbitrarily chosen among control subjects' RNA, was used as a reference sample. Amplification over 32 cycles was considered out of linear range.30

STATISTICAL ANALYSES

We performed statistical analyses with the SPSS software package (version 13.0; SPSS, Chicago, Illinois). We used 1-way analysis of variance to compare methylation levels between sample groups. P values <.05 were considered statistically significant. The Mann-Whitney U test was used to compare nongaussian distribution. Analysis of covariance was used to assess the possible influence of sex and age.

METHYLATION ANALYSIS OF BDNF PROMOTER IV IN THE WERNICKE AREA OF SUICIDE VICTIMS AND NORMAL CONTROL SUBJECTS

To investigate a possible correlation between the DNA methylation state of the BDNF gene and suicidal behavior, we analyzed genomic DNA samples derived from postmortem brain samples extracted from the Wernicke area of 44 suicide completers (21 men and 23 women; age range, 15-79 years) and 33 nonsuicide controls (16 men and 17 women; age range, 13-76 years). A detailed description of the subjects analyzed in this study, including psychiatric diagnoses, medication, and toxicological findings, is reported in the eTable.

We chose to analyze the methylation status of 4 CpG sites (+10, +16, +25, and +28) located downstream the transcription initiation site of promoter IV of the BDNF gene (Figure 1A). These sites are embedded in a small CpG island (located from −99 to +101) spanning the transcriptional start site (TSS). A quantitative methylation analysis was performed using the pyrosequencing technology to assess the precise degree of methylation of each CpG site. A representative pyrogram is shown in Figure 1B. Full raw data, indicating the methylation degree of each CpG site in each sample, are reported in the Table. The analysis was repeated 3 times and each value did not differ significantly (±0.7%). The mean methylation degree of the 4 CpG sites in each subject is also reported in the Table and graphically shown in Figure 2. Overall, the results showed that the mean methylation degree of the 4 CpG sites was always less than 12.9% in the 33 nonsuicide control subjects, while in 13 of 44 suicide victims (30%), the mean methylation degree ranged between 13.1% and 34.2% (Figure 2 and the Table). To establish whether the observed differences in the mean methylation degree between suicide and nonsuicide subjects were statistically significant, we performed 1-way analysis of variance. As shown in Figure 3A, significant differences were clearly discernible in the mean methylation status of the region analyzed between cases and controls (1-way analysis of variance, F = 13.7; P = .001). By the same method, we analyzed the relationship between the methylation degree of each of the 4 CpG sites and suicidal behavior. Statistically significant differences between cases and controls were found for the CpG sites +10 and +25 (Figure 3B). A similar, but not statistically significant, trend to hypermethylation was found for the other 2 CpG sites tested (+16 and +28). We also analyzed the data by a nonparametric test (Mann-Whitney U test), obtaining similar results. Statistically significant differences between cases and controls were found for the mean methylation of the region (Mann-Whitney U test, P = .001) and for CpG sites +10 and +25 (P = .002 and .001, respectively). No effect of sex or age was found by analysis of covariance (data not shown).

Place holder to copy figure label and caption
Figure 1.

Pyrosequencing analysis of the BDNF gene. A, Structure of the human BDNF gene promoter IV. The transcriptional start site (+1) is indicated by an arrow. The positions of the CpG sites analyzed (open circles) and of the primers used (arrows) for pyrosequencing analysis are indicated. BDNF FW1 (biotinylated) and BDNF RV1 are amplification primers; BDNF S1 is a sequencing primer. B, Top panel: Representative pyrogram for pyrosequencing analysis of BDNF. The 4 targeted cytosines are enclosed in shaded squares (because the reverse strand was read, G peaks indicate methylated cytosine while A indicates unmethylated cytosine, and the order of the CpG sites analyzed is inverted). Bottom panel: Representative pyrogram of global methylation (long interspersed nucleotide elements [LINE-1]). Four CpG sites were analyzed (shaded squares); in this case, because the forward strand was read, C peaks indicate methylation while T peaks indicate no methylation.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Percentage of BDNF promoter IV methylation in suicide subjects and nonsuicide controls. Each subject is identified by a sample ID. For each sample, the percentage of methylation represents the mean methylation degree of the 4 CpG sites analyzed.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Statistical analysis of the methylation status of 4 CpG residues in the region of promoter IV of the BDNF gene in suicide and control subjects. A, Average methylation of the 4 CpG sites. Values represent mean (SE). B, Methylation of individual CpG sites. Values represent mean and 95% confidence interval.

Graphic Jump Location

Next, because the global DNA methylation state of specific brain areas could vary among individuals, we addressed whether an increased methylation degree of BDNF promoter/exon IV in suicide victims was associated with higher methylation levels throughout the genome or whether it was a specific feature of the BDNF gene. We studied global methylation in all suicide and control samples by quantitatively analyzing the methylation of LINE-1, using pyrosequencing. A representative pyrogram is shown in Figure 1B, bottom panel. Results, summarized in the Table, indicate that global methylation ranged between 81% and 90% among individuals. However, no correlation was found between global methylation and BDNF promoter IV methylation degree (data not shown). Moreover, global methylation levels were not associated with suicidality, sex, or age (data not shown). Finally, we verified whether psychopathological conditions or past or current use of specific medications could influence the BDNF gene methylation state. Drug history indicated that no subject used psychoactive substances during life other than those detected by toxicological screens and reported in the eTable. We found no significant correlation between any of these variables and the methylation degree at the BDNF promoter (Mann-Whitney U test, P = .30 and .14, respectively).

Overall, our results show that BDNF promoter/exon IV is hypermethylated in the postmortem brain Wernicke area of suicide subjects compared with normal control subjects irrespective of global methylation levels, suggesting that a gene-specific increase in DNA methylation could cause or contribute to downregulation of BDNF expression in suicide subjects.

EXTENDED METHYLATION ANALYSIS BY MOLECULAR CLONING AND MassARRAY

To extend the methylation analysis to a wider genomic region and to both upper and lower strands, we performed 2 additional independent quantitative methylation analyses, bisulfite genomic sequencing (molecular cloning technique) and a mass spectrometry–based methylation analysis (MassARRAY). These analyses were performed in a subgroup of subjects (n = 24) including 13 suicide completers and 11 control subjects of different ages and sex. We analyzed by bisulfite genomic sequencing the genomic region from −203 to +58 (upper strand) encompassing the TSS of the BDNF gene and including 16 CpG sites (Figure 4). The results showed that the analyzed BDNF gene region was mainly unmethylated or low methylated and that the differentially methylated sites were essentially those lying in the proximity of the TSS. The results confirmed that sites +10, +16, +25, and +28 were differentially methylated between suicide and control subjects, showing methylation values comparable with those obtained by pyrosequencing analysis. In addition, to confirm the pyrosequencing data, this analysis showed that CpG site −93 was hypermethylated in almost all samples irrespective of group (suicide and control subjects), age, or sex. Finally, by MassARRAY, we analyzed the genomic region from −219 to +405 on the upper strand, including 30 CpG sites, and the region from −289 to +512 on the lower strand, including 34 CpG sites (Figure 5). This analysis showed that also in this wider genomic region most of the CpG sites were unmethylated or low methylated in both suicide and control subjects and that, on the upper strand, sites +10, +16, +25, and +28 remained differentially methylated. Differences in the methylation degree of these same sites detected on the lower strand were slighter but a higher methylation level was detected at some of these CpG sites where the correspondent sites on the upper strand were hypermethylated. Finally, frequent hypermethylation of −93 on the upper strand site was confirmed in these experiments. Slight differences in the methylation degree at some CpG sites observed in the analysis by the different technical approaches were possibly due to the different sensitivity of the methods.

Place holder to copy figure label and caption
Figure 4.

Methylation analysis by genomic bisulfite sequencing. Top panel: Diagrammatic representation of BDNF gene (promoter/exon IV). Regulatory upstream region (open box), exon IV (black box), and intron IV (gray box) are indicated. Vertical bars represent the relative positions of each CpG site. The transcriptional start site is indicated by an arrow. The relative positions of the primers used for amplification (BDNF FW2 and BDNF RV2) are indicated. Bottom panel: The methylation degree of each CpG site (circles). Each subject is identified by a sample ID. SC indicates suicide completers; controls, nonsuicide subjects.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 5.

Methylation analysis by MassARRAY (Sequenom, San Diego, California). Top panel: Diagrammatic representation of the BDNF gene (promoter/exon IV) as in Figure 4. The relative positions of the primers used for amplification of amplicons U1 (upper strand from −218 to +160), U2 (upper strand from +134 to +405), L1 (lower strand from −289 to +163), and L2 (lower strand from +33 to +512) are indicated by arrows on top. Bottom panel: Comprehensive view of methylation state of the BDNF gene. The methylation degree of each CpG site (circles) belonging to the amplicons U1, U2, L1, and L2 is indicated. CpG sites analyzed by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry were 14/19 (U1), 7/11 (U2), 16/21 (L1), and 15/17 (L2). For CpG sites not analyzable by the assay, data from other procedures or the average of 2 adjacent CpG sites are indicated. Each subject is identified by a sample ID. SC indicates suicide completers; controls, nonsuicide subjects.

Graphic Jump Location
RELATIONSHIP BETWEEN BDNF EXPRESSION AND BDNF PROMOTER IV METHYLATION DEGREE

To assess whether hypermethylation of BDNF promoter IV (CpG sites +10, +16, +25, and +28) was associated with decreased gene expression, we analyzed by real-time RT-PCR the BDNF mRNA (transcript IV) levels in the same subgroup of subjects. We analyzed 13 samples from the suicide victims and 11 from control subjects, in particular, 10 samples (4 from the suicide group and 6 from the control group) with a low level of methylation at BDNF promoter IV, 9 samples (4 from the suicide group and 5 from the control group) showing intermediate methylation levels, and 5 samples from suicide subjects with the highest methylation degree (Figure 6). For this quantitative RT-PCR assay, we used specific primers for the analysis of BDNF mRNA transcript originating from promoter IV. The analyzed samples showing a high-methylated BDNF promoter IV expressed lower levels of BDNF mRNA as compared with the low- and medium-methylated samples, being the mildly methylated samples in the midrange (Figure 6).

Place holder to copy figure label and caption
Figure 6.

Relative messenger RNA (mRNA) levels of BDNF transcript IV. The BDNF expression was normalized using 4 internal control genes (as described in the “Methods” section) and relative expression levels are shown. The pH value of each sample is indicated in parentheses. No significant correlation was found between pH values and mRNA expression or methylation degree (Mann-Whitney U test, P = .25 and .21, respectively). The cutoff line (bottom) indicates that detection was over 32 cycles.

Graphic Jump Location

Taken together, our data indicate that a higher-methylated BDNF promoter IV in the Wernicke area of the brain correlates with suicidal behavior and suggests that increased DNA methylation levels of BDNF promoter IV can negatively regulate BDNF expression.

We analyzed, by 3 independent sensitive quantitative methods, the DNA methylation degree at BDNF promoter IV and the global DNA methylation levels in the Wernicke area of the brain of 44 suicide subjects and 33 nonsuicide control subjects. The main conclusions of our work are (1) suicide subjects showed a statistically significant increase of DNA methylation at BDNF promoter IV and this higher methylation degree corresponded to a lower level of BDNF transcript IV; (2) such an increase in CpG methylation was gene specific since it was not accompanied by an increase of global DNA methylation; and (3) global DNA methylation levels in the Wernicke area varied among individuals but did not correlate with suicidal behavior and were not dependent on sex or age.

To our knowledge, the present work and the relative conclusions represent an absolute novelty for several aspects. In fact, the present study is novel in examining the possibility that BDNF hypermethylation could be associated with suicidality. This study was performed on samples of brain tissue obtained from the Wernicke area of suicide completers and control subjects who died of other causes. The Wernicke area was chosen for its function in understanding word meaning and semantic thinking and for its critical involvement with human language and associative and integrative functions. This fact is consistent with several findings of neurocognitive alterations in suicide attempters, such as an impairment in decision making31,32 and problem solving.33 The Wernicke area and its connections with other brain structures represent a unique feature of the human brain, as suicidal behavior is peculiar to humans, and may influence many factors, including human social behavior.34 Completed suicide cannot be considered a sudden and casual death but is the outcome of a process that involves a wide spectrum of thoughts, communications, and acts. It is consistent with this assumption that in suicidal behavior gene expression may be altered in a cortical area that has highly specialized integrative and associative functions. Moreover, postmortem studies reported an age-related expression of BDNF in the temporal cortex,35 suggesting that this neurotrophin is important in the early development of the temporal cortex. Suicidal behavior has been found to be associated with early traumatic experiences and this link could be based on early modifications in the expression of the BDNF gene.

The choice to analyze the methylation state of the BDNF gene derived from previous evidence that BDNF mRNA and protein levels are decreased in different postmortem brain areas (hippocampus and frontal cortex)11,12 and in the plasma36 of suicide victims compared with nonsuicide controls. Human BDNF expression is controlled by a very complex regulatory region including 9 different transcription initiation sites driven by corresponding promoters.14 We chose to analyze the DNA methylation of promoter IV because it has been previously established that the equivalent rat and murine promoters are strongly regulated during development and in adult neurons and that epigenetic mechanisms play a critical role in such transcriptional regulation.6,1517 Of particular relevance are the observations that the epigenetic state of promoter IV may be also modulated in mouse and rat brain by several exogenous factors, such as membrane depolarization-induced calcium influx,18,19 chronic social defeat stress, and antidepressant administration.6 These observations reinforce the growing hypothesis that complex epigenetic mechanisms, which may be modified by environment and may regulate gene activity without altering the DNA code, have long-lasting effects within mature neurons and are implicated in the regulation of human complex behavior, including psychiatric disorders.20,37,38 Maya Vetencourt et al39 showed that cortical administration of diazepam prevents the fluoxetine hydrochloride–mediated BDNF activation in the visual cortex, raising the interesting question of whether changes of BDNF expression or methylation state in suicide subjects may be influenced by drug consumption. However, in this study, we did not find any relationship between BDNF methylation or expression and diazepam or fluoxetine consumption in the study subjects. McGowan et al40 demonstrated that in the brain of 11 suicide subjects with history of early childhood abuse, the ribosomal RNA gene was downregulated and hypermethylated compared with control subjects. Very interestingly, Ernst et al41 found that trkB is hypermethylated in suicide completers in different brain areas. Our study, relating the BDNF gene methylation state to suicidal behavior, strongly supports the conclusions of these studies and provides a possible mechanism responsible for the reduction of BDNF levels observed in the brain of suicide subjects. In the near future, it will be very interesting to extend the methylation analysis of the BDNF gene to other brain areas involved in suicidal behavior.

Previous studies revealed that the methylation of specific CpG sites in the rat and mouse bdnf promoter IV may play a critical role in BDNF gene regulation.15,18 In particular, CpG sites −128 and +19 of the rat bdnf promoter IV may mediate, when methylated, the binding to MeCP2, which in turn is responsible for transcriptional repression.18,19 However, the role of DNA methylation in the control of BDNF expression has not been previously investigated in human tissues. In the present work, we show that CpG sites adjacent to the TSS of human BDNF transcript IV may play a role in the regulation of BDNF expression. In particular, statistical analysis showed that the methylation of CpG sites +10 and +25 is associated with suicidal behavior. Moreover, we showed that a higher methylation degree of these sites is associated with lower BDNF mRNA levels, suggesting that, at least in part, DNA methylation is involved in BDNF transcriptional regulation in the human brain. Because we found much lower BDNF transcript IV mRNA levels in samples showing 20% to 30% methylation of 4 CpG sites in BDNF promoter IV compared with samples showing 3% to 5% methylation, we hypothesize that other mechanisms, including additional epigenetic mechanisms and/or lack of transcription factors, may contribute to such a strong repression. It will be very interesting to determine the relative role, in the regulation of BDNF expression, of CpG sites lying in the different BDNF gene promoters to study the possible association of the epigenetic state of other promoters with suicidal behavior. DNA methylation and other epigenetic factors could also provide some explanation for reported conflicting data on the association of BDNF gene polymorphisms with suicidal behavior.9,10

In this study, we found a relatively low rate of suicide completers with a psychiatric disease. It cannot be excluded that in a few cases psychiatric conditions were present but were undiagnosed. However, the rate of diagnosed psychiatric diseases among suicide completers i n our sample is comparable with the rate reported by other studies.42 Moreover, the geographical region where the sample was collected has high suicide rates and it has been suggested that genetic component(s) might have an effect on increased suicide rates.43 This genetic component possibly acts through personality features such as impulsive aggression. Overall, our study reinforces the mounting hypothesis that DNA methylation is involved in psychiatric conditions and deviant human behaviors and represents one of the first demonstrations that alteration of gene-specific DNA methylation in the human brain is associated with suicidal behavior.

Correspondence: Lorenzo Chiariotti, MD, PhD, Dipartimento di Biologia e Patologia Cellulare e Molecolare, via S. Pansini, 5, 80131 Naples, Italy (chiariot@unina.it) and Giuseppe Castaldo, MD, PhD, CEINGE–Biotecnologie Avanzate, via Comunale Margherita 482, 80145 Naples, Italy (castaldo@dbbm.unina.it).

Submitted for Publication: October 21, 2008; final revision received June 16, 2009; accepted June 29, 2009.

Author Contributions: Drs Keller and Sarchiapone contributed equally to this work.

Financial Disclosure: None reported.

Funding/Support: This work was supported by grant DGRC 2362/07 from Regione Campania and grants PS-126/IND and PRIN-2007KR7PRY from MIUR. Setup of experimental procedures for methylation analysis was partially supported by NOGEC and Associazione Italiana per la Ricerca sul Cancro.

Additional Contributions: We thank Vittorio Enrico Avvedimento, MD, PhD, Pasquale De Luca, PhD, and Andrea De Bartolomeis, MD, PhD, for helpful scientific discussions and useful suggestions and G. Oriani, MD, PhD, for promoting collaboration among the participant groups. We dedicate this study to our beloved friend and colleague Andrej Marusic, who largely contributed to the design and implementation of this research project. The absence of his brilliant mind consitutes a great loss for suicidology.

Bibel  MBarde  YA Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev2000142329192937
PubMed
Tyler  WJAlonso  MBramham  CRPozzo-Miller  LD From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem200295224237
PubMed
Yamada  KMizuno  MNabeshima  T Role for brain-derived neurotrophic factor in learning and memory. Life Sci2002707735744
PubMed
Bolaños  CANestler  EJ Neurotrophic mechanisms in drug addiction. Neuromolecular Med2004516983
PubMed
Berton  O McClung  CADileone  RJKrishnan  VRenthal  WRusso  SJGraham  DTsankova  NMBolanos  CARios  MMonteggia  LMSelf  DWNestler  EJ Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science20063115762864868
PubMed
Tsankova  NMBerton  ORenthal  WKumar  ANeve  RLNestler  EJ Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci200694519525
PubMed
Post  RM Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J Psychiatr Res20074112979990
PubMed
Takahashi  TSuzuki  MTsunoda  MKawamura  YTakahashi  NTsuneki  HKawasaki  YZhou  SYKobayashi  SSasaoka  TSeto  HKurachi  MOzaki  N Association between the brain-derived neurotrophic factor Val66Met polymorphism and brain morphology in a Japanese sample of schizophrenia and healthy comparisons. Neurosci Lett200843513439
PubMed
Zarrilli  FAngiolillo  ACastaldo  GChiariotti  LKeller  SSacchetti  SMarusic  AZagar  TCarli  VRoy  ASarchiapone  M Brain derived neurotrophic factor (BDNF) genetic polymorphism (Val66Met) in suicide: a study of 512 cases. Am J Med Genet B Neuropsychiatr Genet2009150B4599600
PubMed
Sarchiapone  MCarli  VRoy  AIacoviello  LCuomo  CLatella  MCdi Giannantonio  MJaniri  Lde Gaetano  MJanal  MN Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients. Neuropsychobiology2008573139145
PubMed
Dwivedi  YRizavi  HSConley  RRRoberts  RCTamminga  CAPandey  GN Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry2003608804815
PubMed
Dwivedi  YMondal  ACRizavi  HSConley  RR Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry2005584315324
PubMed
Aid  TKazantseva  APiirsoo  MPalm  KTimmusk  T Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res2007853525535
PubMed
Pruunsild  PKazantseva  AAid  TPalm  KTimmusk  T Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics2007903397406
PubMed
Dennis  KELevitt  P Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain. Brain Res Mol Brain Res20051401-219
PubMed
Mellios  NHuang  HSGrigorenko  ARogaev  EAkbarian  S A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet2008171930303042
PubMed
Mellios  NHuang  HSBaker  SPGaldzicka  MGinns  EAkbarian  S Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry2009651210061014
PubMed
Chen  WGChang  QLin  YMeissner  AWest  AEGriffith  ECJaenisch  RGreenberg  ME Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science20033025646885889
PubMed
Zhou  ZHong  EJCohen  SZhao  WNHo  HYSchmidt  LChen  WGLin  YSavner  EGriffith  ECHu  LSteen  JAWeitz  CJGreenberg  ME Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron2006522255269
PubMed
Tsankova  NRenthal  WKumar  ANestler  EJ Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci200785355367
PubMed
Fitzgerald  RLRivera  JDHerold  DA Broad spectrum drug identification directly from urine, using liquid chromatography-tandem mass spectrometry. Clin Chem1999458, pt 112241234
PubMed
Fleige  SPfaffl  MW RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med2006272-3126139
PubMed
Tost  JGut  IG DNA methylation analysis by pyrosequencing. Nat Protoc20072922652275
PubMed
Yang  ASEstecio  MRDoshi  KKondo  YTajara  EHIssa  JP A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res2004323e38
PubMed
Lembo  FPero  RAngrisano  TVitiello  CIuliano  RBruni  CBChiariotti  L MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Mol Cell Biol200323516561665
PubMed
Ehrich  MNelson  MRStanssens  PZabeau  MLiloglou  TXinarianos  GCantor  CRField  JKvan den Boom  D Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A2005102441578515790
PubMed
Vandesompele  JDe Preter  KPattyn  FPoppe  BVan Roy  NDe Paepe  ASpeleman  F Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol200237H0034
PubMed
Barrachina  MCastaño  EFerrer  I TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int2006493276284
PubMed
Hänninen  MMHaapasalo  JHaapasalo  HFleming  REBritton  RSBacon  BRParkkila  S Expression of iron-related genes in human brain and brain tumors. BMC Neurosci20091036
PubMed
Soong  RLadányi  A Improved indicators for assessing the reliability of detection and quantification by kinetic PCR. Clin Chem2003496, pt 1973976
PubMed
Jollant  FBellivier  FLeboyer  MAstruc  BTorres  SVerdier  RCastelnau  DMalafosse  ACourtet  P Impaired decision making in suicide attempters. Am J Psychiatry20051622304310
PubMed
Jollant  FGuillaume  SJaussent  ICastelnau  DMalafosse  ACourtet  P Impaired decision-making in suicide attempters may increase the risk of problems in affective relationships. J Affect Disord2007991-35962
PubMed
Speckens  AEHawton  K Social problem solving in adolescents with suicidal behavior: a systematic review. Suicide Life Threat Behav2005354365387
PubMed
Rilling  JKGlasser  MFPreuss  TMMa  XZhao  THu  XBehrens  TE The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci2008114426428
PubMed
Webster  MJHerman  MMKleinman  JEShannon Weickert  C BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns200668941951
PubMed
Kim  YKLee  HPWon  SDPark  EYLee  HYLee  BHLee  SWYoon  DHan  CKim  DJChoi  SH Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuropsychopharmacol Biol Psychiatry20073117885
PubMed
Onishchenko  NKarpova  NSabri  FCastrén  ECeccatelli  S Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem2008106313781387
PubMed
Szyf  M McGowan  PMeaney  MJ The social environment and the epigenome. Environ Mol Mutagen20084914660
PubMed
Maya Vetencourt  JFSale  AViegi  ABaroncelli  LDe Pasquale  RO'Leary  OFCastrén  EMaffei  L The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science20083205874385388
PubMed
McGowan  POSasaki  AHuang  TCUnterberger  ASuderman  MErnst  CMeaney  MJTurecki  GSzyf  M Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One200835e2085
PubMed
Ernst  CDeleva  VDeng  XSequeira  APomarenski  AKlempan  TErnst  NQuirion  RGratton  ASzyf  MTurecki  G Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry20096612232
PubMed
Rockett  IRLian  YStack  SDucatman  AMWang  S Discrepant comorbidity between minority and white suicides: a national multiple cause-of-death analysis. BMC Psychiatry2009910
PubMed
Marusic  A History and geography of suicide: could genetic risk factors account for the variation in suicide rates? Am J Med Genet C Semin Med Genet2005133C14347
PubMed

Figures

Place holder to copy figure label and caption
Figure 1.

Pyrosequencing analysis of the BDNF gene. A, Structure of the human BDNF gene promoter IV. The transcriptional start site (+1) is indicated by an arrow. The positions of the CpG sites analyzed (open circles) and of the primers used (arrows) for pyrosequencing analysis are indicated. BDNF FW1 (biotinylated) and BDNF RV1 are amplification primers; BDNF S1 is a sequencing primer. B, Top panel: Representative pyrogram for pyrosequencing analysis of BDNF. The 4 targeted cytosines are enclosed in shaded squares (because the reverse strand was read, G peaks indicate methylated cytosine while A indicates unmethylated cytosine, and the order of the CpG sites analyzed is inverted). Bottom panel: Representative pyrogram of global methylation (long interspersed nucleotide elements [LINE-1]). Four CpG sites were analyzed (shaded squares); in this case, because the forward strand was read, C peaks indicate methylation while T peaks indicate no methylation.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Percentage of BDNF promoter IV methylation in suicide subjects and nonsuicide controls. Each subject is identified by a sample ID. For each sample, the percentage of methylation represents the mean methylation degree of the 4 CpG sites analyzed.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Statistical analysis of the methylation status of 4 CpG residues in the region of promoter IV of the BDNF gene in suicide and control subjects. A, Average methylation of the 4 CpG sites. Values represent mean (SE). B, Methylation of individual CpG sites. Values represent mean and 95% confidence interval.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4.

Methylation analysis by genomic bisulfite sequencing. Top panel: Diagrammatic representation of BDNF gene (promoter/exon IV). Regulatory upstream region (open box), exon IV (black box), and intron IV (gray box) are indicated. Vertical bars represent the relative positions of each CpG site. The transcriptional start site is indicated by an arrow. The relative positions of the primers used for amplification (BDNF FW2 and BDNF RV2) are indicated. Bottom panel: The methylation degree of each CpG site (circles). Each subject is identified by a sample ID. SC indicates suicide completers; controls, nonsuicide subjects.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 5.

Methylation analysis by MassARRAY (Sequenom, San Diego, California). Top panel: Diagrammatic representation of the BDNF gene (promoter/exon IV) as in Figure 4. The relative positions of the primers used for amplification of amplicons U1 (upper strand from −218 to +160), U2 (upper strand from +134 to +405), L1 (lower strand from −289 to +163), and L2 (lower strand from +33 to +512) are indicated by arrows on top. Bottom panel: Comprehensive view of methylation state of the BDNF gene. The methylation degree of each CpG site (circles) belonging to the amplicons U1, U2, L1, and L2 is indicated. CpG sites analyzed by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry were 14/19 (U1), 7/11 (U2), 16/21 (L1), and 15/17 (L2). For CpG sites not analyzable by the assay, data from other procedures or the average of 2 adjacent CpG sites are indicated. Each subject is identified by a sample ID. SC indicates suicide completers; controls, nonsuicide subjects.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 6.

Relative messenger RNA (mRNA) levels of BDNF transcript IV. The BDNF expression was normalized using 4 internal control genes (as described in the “Methods” section) and relative expression levels are shown. The pH value of each sample is indicated in parentheses. No significant correlation was found between pH values and mRNA expression or methylation degree (Mann-Whitney U test, P = .25 and .21, respectively). The cutoff line (bottom) indicates that detection was over 32 cycles.

Graphic Jump Location

Tables

References

Bibel  MBarde  YA Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev2000142329192937
PubMed
Tyler  WJAlonso  MBramham  CRPozzo-Miller  LD From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem200295224237
PubMed
Yamada  KMizuno  MNabeshima  T Role for brain-derived neurotrophic factor in learning and memory. Life Sci2002707735744
PubMed
Bolaños  CANestler  EJ Neurotrophic mechanisms in drug addiction. Neuromolecular Med2004516983
PubMed
Berton  O McClung  CADileone  RJKrishnan  VRenthal  WRusso  SJGraham  DTsankova  NMBolanos  CARios  MMonteggia  LMSelf  DWNestler  EJ Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science20063115762864868
PubMed
Tsankova  NMBerton  ORenthal  WKumar  ANeve  RLNestler  EJ Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci200694519525
PubMed
Post  RM Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J Psychiatr Res20074112979990
PubMed
Takahashi  TSuzuki  MTsunoda  MKawamura  YTakahashi  NTsuneki  HKawasaki  YZhou  SYKobayashi  SSasaoka  TSeto  HKurachi  MOzaki  N Association between the brain-derived neurotrophic factor Val66Met polymorphism and brain morphology in a Japanese sample of schizophrenia and healthy comparisons. Neurosci Lett200843513439
PubMed
Zarrilli  FAngiolillo  ACastaldo  GChiariotti  LKeller  SSacchetti  SMarusic  AZagar  TCarli  VRoy  ASarchiapone  M Brain derived neurotrophic factor (BDNF) genetic polymorphism (Val66Met) in suicide: a study of 512 cases. Am J Med Genet B Neuropsychiatr Genet2009150B4599600
PubMed
Sarchiapone  MCarli  VRoy  AIacoviello  LCuomo  CLatella  MCdi Giannantonio  MJaniri  Lde Gaetano  MJanal  MN Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients. Neuropsychobiology2008573139145
PubMed
Dwivedi  YRizavi  HSConley  RRRoberts  RCTamminga  CAPandey  GN Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry2003608804815
PubMed
Dwivedi  YMondal  ACRizavi  HSConley  RR Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry2005584315324
PubMed
Aid  TKazantseva  APiirsoo  MPalm  KTimmusk  T Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res2007853525535
PubMed
Pruunsild  PKazantseva  AAid  TPalm  KTimmusk  T Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics2007903397406
PubMed
Dennis  KELevitt  P Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain. Brain Res Mol Brain Res20051401-219
PubMed
Mellios  NHuang  HSGrigorenko  ARogaev  EAkbarian  S A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet2008171930303042
PubMed
Mellios  NHuang  HSBaker  SPGaldzicka  MGinns  EAkbarian  S Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry2009651210061014
PubMed
Chen  WGChang  QLin  YMeissner  AWest  AEGriffith  ECJaenisch  RGreenberg  ME Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science20033025646885889
PubMed
Zhou  ZHong  EJCohen  SZhao  WNHo  HYSchmidt  LChen  WGLin  YSavner  EGriffith  ECHu  LSteen  JAWeitz  CJGreenberg  ME Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron2006522255269
PubMed
Tsankova  NRenthal  WKumar  ANestler  EJ Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci200785355367
PubMed
Fitzgerald  RLRivera  JDHerold  DA Broad spectrum drug identification directly from urine, using liquid chromatography-tandem mass spectrometry. Clin Chem1999458, pt 112241234
PubMed
Fleige  SPfaffl  MW RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med2006272-3126139
PubMed
Tost  JGut  IG DNA methylation analysis by pyrosequencing. Nat Protoc20072922652275
PubMed
Yang  ASEstecio  MRDoshi  KKondo  YTajara  EHIssa  JP A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res2004323e38
PubMed
Lembo  FPero  RAngrisano  TVitiello  CIuliano  RBruni  CBChiariotti  L MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Mol Cell Biol200323516561665
PubMed
Ehrich  MNelson  MRStanssens  PZabeau  MLiloglou  TXinarianos  GCantor  CRField  JKvan den Boom  D Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A2005102441578515790
PubMed
Vandesompele  JDe Preter  KPattyn  FPoppe  BVan Roy  NDe Paepe  ASpeleman  F Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol200237H0034
PubMed
Barrachina  MCastaño  EFerrer  I TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int2006493276284
PubMed
Hänninen  MMHaapasalo  JHaapasalo  HFleming  REBritton  RSBacon  BRParkkila  S Expression of iron-related genes in human brain and brain tumors. BMC Neurosci20091036
PubMed
Soong  RLadányi  A Improved indicators for assessing the reliability of detection and quantification by kinetic PCR. Clin Chem2003496, pt 1973976
PubMed
Jollant  FBellivier  FLeboyer  MAstruc  BTorres  SVerdier  RCastelnau  DMalafosse  ACourtet  P Impaired decision making in suicide attempters. Am J Psychiatry20051622304310
PubMed
Jollant  FGuillaume  SJaussent  ICastelnau  DMalafosse  ACourtet  P Impaired decision-making in suicide attempters may increase the risk of problems in affective relationships. J Affect Disord2007991-35962
PubMed
Speckens  AEHawton  K Social problem solving in adolescents with suicidal behavior: a systematic review. Suicide Life Threat Behav2005354365387
PubMed
Rilling  JKGlasser  MFPreuss  TMMa  XZhao  THu  XBehrens  TE The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci2008114426428
PubMed
Webster  MJHerman  MMKleinman  JEShannon Weickert  C BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns200668941951
PubMed
Kim  YKLee  HPWon  SDPark  EYLee  HYLee  BHLee  SWYoon  DHan  CKim  DJChoi  SH Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuropsychopharmacol Biol Psychiatry20073117885
PubMed
Onishchenko  NKarpova  NSabri  FCastrén  ECeccatelli  S Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem2008106313781387
PubMed
Szyf  M McGowan  PMeaney  MJ The social environment and the epigenome. Environ Mol Mutagen20084914660
PubMed
Maya Vetencourt  JFSale  AViegi  ABaroncelli  LDe Pasquale  RO'Leary  OFCastrén  EMaffei  L The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science20083205874385388
PubMed
McGowan  POSasaki  AHuang  TCUnterberger  ASuderman  MErnst  CMeaney  MJTurecki  GSzyf  M Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One200835e2085
PubMed
Ernst  CDeleva  VDeng  XSequeira  APomarenski  AKlempan  TErnst  NQuirion  RGratton  ASzyf  MTurecki  G Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry20096612232
PubMed
Rockett  IRLian  YStack  SDucatman  AMWang  S Discrepant comorbidity between minority and white suicides: a national multiple cause-of-death analysis. BMC Psychiatry2009910
PubMed
Marusic  A History and geography of suicide: could genetic risk factors account for the variation in suicide rates? Am J Med Genet C Semin Med Genet2005133C14347
PubMed

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Increased BDNF Promoter Methylation in the Wernicke Area of Suicide Subjects
Arch Gen Psychiatry.2010;67(3):258-267.eSupplement

eSupplement -Download PDF (178 KB). This file requires Adobe Reader®.
Supplemental Content

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 73

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles