0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Review |

The Role of Dopamine in the Pathophysiology of Depression

Boadie W. Dunlop, MD; Charles B. Nemeroff, MD, PhD
Arch Gen Psychiatry. 2007;64(3):327-337. doi:10.1001/archpsyc.64.3.327.
Text Size: A A A
Published online

Extract

Multiple sources of evidence support a role for diminished dopaminergic neurotransmission in major depression. The physiological alterations underlying reduced dopamine (DA) signaling could result from either diminished DA release from presynaptic neurons or impaired signal transduction, either due to changes in receptor number or function and/or altered intracellular signal processing. There are data supporting each of these mechanisms, although interpretation of previous research is confounded by issues around study population, medication status, and technological limitations. In some patients with depression, DA-related disturbances improve by treatment with antidepressants, presumably by acting on serotonergic or noradrenergic circuits, which then affect DA function. However, most antidepressant treatments do not directly enhance DA neurotransmission, which may contribute to residual symptoms, including impaired motivation, concentration, and pleasure. Animal models of major depression show considerable responsiveness to manipulations of DA neurotransmission. Several studies, including postmortem investigations, particularly of subjects with severe depression, have demonstrated reduced concentrations of DA metabolites both in the cerebrospinal fluid and in brain regions that mediate mood and motivation. Although the neuroimaging findings are not unequivocal, several studies support the hypothesis that major depression is associated with a state of reduced DA transmission, possibly reflected by a compensatory up-regulation of D2 receptors. These alterations in DA signaling may underlie the findings of increased “liking” or “high” feelings reported by severely depressed subjects treated with d-amphetamine compared with the response of less severely ill and normal control subjects. The efficacy of medications that directly act on DA neurons or receptors, such as monoamine oxidase inhibitors and pramipexole, suggests that subtypes of depression stemming from a primary DA dysfunction exist. Further research on the contribution of DA to the pathophysiology of depression is justified to improve outcomes for patients with treatment-resistant and nonremitting depression.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

First Page Preview

View Large
First page PDF preview

Figures

Place holder to copy figure label and caption
Figure 1.

Dopaminergic pathways in the human brain. Reprinted with permission from Szabo et al (2004)5 and Sanchez-Gonzalez et al (2005).6 (Brain drawing used with the permission of Robert Finkbeiner.) Note that this image is a midline sagittal section of the brain. Many of the structures identified are located more laterally than the drawing indicates.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Dopaminergic synaptic signaling. Reprinted with permission from Szabo et al (2004).5 AADC indicates aromatic acid decarboxylase; AMPT, α-methylparatyrosine; AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; COMT, catechol-O-methyltransferase; D1-D5, dopamine receptors 1 through 5; DA, dopamine; DAT, dopamine transporter; DOPA, 3,4-dihydroxyphenylalanine; DOPAC, dihydroxyphenylacetic acid; Gi, Go, and Gs, protein subunits; HVA, homovanillic acid; MAO, monoamine oxidase; MT, 3-methoxytyramine; TH, tyrosine hydroxylase; and VMAT, vesicular monoamine transporter.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Differing structures of dopamine terminals in the striatum and prefrontal cortex. Reprinted with permission from Sesack et al (1998).14 COMT indicates catechol-O-methyltransferase; DA, dopamine; and NE, norepinephrine.

Graphic Jump Location

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 299

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();