Impact of Smoking on Cognitive Decline in Early Old Age

The Whitehall II Cohort Study

Séverine Sabia, PhD; Alexis Elbaz, MD, PhD; Aline Dugravot, MSc; Jenny Head, MSc; Martin Shipley, MSc; Gareth Hagger-Johnson, PhD; Mika Kivimaki, PhD; Archana Singh-Manoux, PhD

Context: Smoking is a possible risk factor for dementia, although its impact may have been underestimated in elderly populations because of the shorter life span of smokers.

Objective: To examine the association between smoking history and cognitive decline in the transition from midlife to old age.

Design: Cohort study.

Participants: Data are from 5099 men and 2137 women in the Whitehall II study, mean age 56 years (range, 44-69 years) at the first cognitive assessment.

Main Outcome Measures: The cognitive test battery was composed of tests of memory, vocabulary, executive function (composed of 1 reasoning and 2 fluency tests), and a global cognitive score summarizing performance across all 5 tests. Smoking status was assessed over the entire study period. Linear mixed models were used to assess the association between smoking history and 10-year cognitive decline, expressed as z scores.

Results: In men, 10-year cognitive decline in all tests except vocabulary among never smokers ranged from a quarter to a third of the baseline standard deviation. Faster cognitive decline was observed among current smokers compared with never smokers in men (mean difference in 10-year decline in global cognition =−0.09 [95% CI, −0.15 to −0.03] and executive function =−0.11 [95% CI, −0.17 to −0.05]). Recent ex-smokers had greater decline in executive function (−0.08 [95% CI, −0.14 to −0.02]), while the decline in long-term ex-smokers was similar to that among never smokers. In analyses that additionally took dropout and death into account, these differences were 1.2 to 1.5 times larger. In women, cognitive decline did not vary as a function of smoking status.

Conclusions: Compared with never smokers, middle-aged male smokers experienced faster cognitive decline in global cognition and executive function. In ex-smokers with at least a 10-year cessation, there were no adverse effects on cognitive decline.

©2012 American Medical Association. All rights reserved.
Objective was to examine whether age modifies the association between smoking and cognitive decline, 25, 26 and measures of verbal fluency, phonemic, which is of increasing difficulty and 6 response choices. Executive function was derived from 3 tests: the timed (10 minutes) Alice Heim 4-1 test, which assesses reasoning and is composed of a series of 65 verbal and mathematical reasoning items of increasing difficulty, 27, 28 and 2 measures of verbal fluency, phonemic, which is assessed via 5 words, and semantic fluency, which uses the names of animals. 29 One minute was allowed for each test. The mean of the standardized z scores of these 3 tests (mean [SD]=0 [1]) using the mean and standard deviation from phase 5 was used as the executive function score.

A global cognitive score was created using all 5 tests described earlier by first standardizing the raw scores on each test to z scores (mean [SD]=0 [1]) using the mean and standard deviation at phase 5 in the entire cohort for each test. The z scores were then averaged to yield the global cognitive score, seen to minimize problems due to measurement error. 29, 30

COVARIATES OVER THE FOLLOW-UP

These included coronary heart disease and incident self-reported stroke from phase 5 to phase 9 and lung function from phases 7 and 9. 30 measured using a portable flow spirometer (MicroPlus Spirometer; Micro Medical Ltd) used herein as forced expiratory volume in 1 second. 31

STATISTICAL ANALYSES

We investigated the association between smoking history and global cognition, memory, vocabulary, and executive func-
CROSS-SECTIONAL AND LONGITUDINAL ASSOCIATION AS A FUNCTION OF SMOKING HISTORY

Mean raw baseline cognitive scores and 10-year cognitive change for all 5 cognitive tests are presented in eTable 1. The cross-sectional associations between smoking history and cognitive function at phase 5, estimated from the mixed models (model 1), suggested that long-term ex-smokers had better cognitive scores than never smokers on all tests except memory, in both men and women (eTable 2). Table 2 shows the estimates of subsequent cognitive change over 10 years derived from the same models. In men, compared with never smokers, current smokers had a greater 10-year decline in global cognition (mean difference in decline = −0.09; 95% CI, −0.15 to −0.03) and executive function (−0.11; 95% CI, −0.17 to −0.05). This effect size was similar to the effect of 10 years of age on cognitive decline. Among recent ex-smokers, decline in executive function (−0.08; 95% CI, −0.14 to −0.02) was faster than among never smokers. Smoking history was not associated with cognitive change in women.

In men, the associations between smoking history and decline in global cognition and executive function were not attenuated after adjustment for other health behaviors and health measures (eTable 3). Entering coronary heart disease and stroke events as time-dependent variables (model 3), and health measures at phase 5 (model 2), then stroke and coronary heart disease as time-dependent variables (model 3), and other health behaviors and health measures on the same individual are correlated. We fitted both the intercept and slope as random effects, allowing individual differences both in cognitive performance at baseline and rate of cognitive decline. Interaction terms suggested sex differences in the association between smoking history and cognitive decline (P = .03 for global cognition, P = .54 for memory, P = .15 for vocabulary, and P = .02 for executive function), leading us to stratify the analyses by sex.

The linear mixed model included terms for time (individual follow-up divided by 10 to yield effects of change over 10 years), age at baseline (centered at 55 years), smoking history at baseline, education, occupational position, marital status, and the interaction of each of the covariates with time (model 1) to take into account the fact that all covariates can influence the rate of cognitive decline. The interaction term between smoking history and time provides the mean difference in the 10-year decline among current smokers, long-term ex-smokers, and recent ex-smokers compared with the never smokers. This model was subsequently expanded to include covariates and their interaction with time: first, other health behaviors and health measures at phase 5 (model 2), then stroke and coronary heart disease as time-dependent variables (model 3), and finally the analyses presented in model 2 were repeated with lung function added as a covariate (model 4).

Using models similar to model 1, we investigated dose–response associations between smoking and cognitive decline using pack-years of smoking (at phase 5) and the association between smoking status over the follow-up and concurrent cognitive change. A 3-way interaction term between age, smoking history, and time was used to assess whether the effect of smoking on cognitive decline differed as a function of age. The results of this analysis are presented graphically to make them easily understandable, with estimates of the regression coefficients from model 1 stratified at 53 years, the median age. In the final set of analyses, we examined the impact of missing data (due to death or dropout) on the estimates of cognitive decline using joint modeling,20,22 which allowed us to take into account the correlation between cognitive decline, time to dropout, and time to death (eAppendix “Methods” section, http://www.archgenpsychiatry.com).

Several sensitivity analyses were conducted. First, interactions of smoking with education (P > .43) and apolipoprotein allele ε4 (P > .24) were examined; although both variables were associated with cognitive scores at baseline, they did not influence the association of smoking history with cognitive decline. Second, we repeated the analysis among participants with a Mini-Mental State Examination score of 24 or more at phases 7 and 9 to ensure that the results were not being driven by potential cases of dementia.36 Finally, we restricted the main analysis to individuals with complete data, that is, those who had cognitive data at all 3 waves. All analyses were performed with SAS, version 9.2 (SAS Institute).

RESULTS

SAMPLE DESCRIPTION AND MISSING DATA

Of the 10 308 participants at phase 1 (1985–1988), 306 had died and 752 had dropped out from the study before the start of the cognitive data collection at phase 5 (1997–1999). Of the 9250 remaining individuals, 7495 participated in 1 or more of the 3 cognitive function assessments over 10 years. All analyses are based on 7236 individuals who had complete data on smoking history and other covariates; this group was similar in age (55.8 vs 56.0 years; P = .09) to those not included in the analysis but composed of more men (70.5% vs 58.7%; P < .001) and persons from the higher occupational group (33.2% vs 20.3%; P < .001). Of those included in the analyses, 973 (13.4%) contributed to 1 wave of cognitive data, 1603 (22.2%) to 2 waves, and 4660 (64.4%) to all 3 waves. Of those included in the analysis, 11.8% had less than primary school education, 35.0% had lower secondary school education, 24.8% had finished school, 20.9% had a university degree, and 7.5% had a postgraduate degree.

Table 1 shows characteristics of study participants as a function of smoking history. Ten-year cognitive decline in men aged 55 years (results not shown) was estimated at −0.34 of the baseline standard deviation (95% CI, −0.35 to −0.32) for global cognition, −0.28 (95% CI, −0.31 to −0.25) for memory, and −0.39 (95% CI, −0.41 to −0.37) for executive function. There was a small improvement in vocabulary scores (0.02; 95% CI, 0.00 to 0.03). The corresponding figures for women were −0.30 (95% CI, −0.33 to −0.28) for global cognition, −0.25 (95% CI, −0.30 to −0.20) for memory, −0.37 (95% CI, −0.40 to −0.34) for executive function, and 0.05 (95% CI, 0.02 to 0.07) for vocabulary. Older individuals experienced faster decline; for example, men (women) aged 65 years compared with 55 years at baseline declined −0.10 (−0.11) of the baseline standard deviation more in global cognition, −0.06 (−0.10) in memory, −0.10 (−0.10) in executive function, and −0.06 (−0.04) in vocabulary.

ARCH GEN PSYCHIATRY/VOL 69 (NO. 6), JUNE 2012 WWW.ARCHGENPSYCHIATRY.COM

©2012 American Medical Association. All rights reserved.
variates did not change these results (eTable 4). In men with data on lung function (n=4100), adjustment for the mean forced expiratory volume in 1 second over the follow-up (phases 7 and 9) also did not reduce the association (results not shown).

Analysis using pack-years of smoking in men showed that for every 10 pack-years there was greater decline in global cognition (mean 10-year cognitive decline=−0.009; 95% CI, −0.017 to −0.001) and executive function (−0.010; 95% CI, −0.019 to −0.001). No association with pack-years of smoking was observed in women.

SMOKING STATUS OVER THE FOLLOW-UP AND CONCURRENT COGNITIVE change

In men, compared with never smokers, persistent smokers over the follow-up were more likely to show faster decline in global cognition (−0.12; 95% CI, −0.19 to −0.04), memory (−0.15; 95% CI, −0.29 to −0.01), and executive function (−0.11; 95% CI, −0.20 to −0.03) (Table 3). Intermittent smokers also had greater decline in global cognition (−0.10; 95% CI, −0.20 to 0.00). The 168 men who stopped smoking after phase 5 did not show greater cognitive decline than the never smokers.
but their decline was not statistically different from that in persistent smokers (P = .21 for global cognition, P = .71 for memory, P = .43 for vocabulary, and P = .36 for executive function). In women, there was no evidence of an association.

SMOKING HISTORY AT PHASE 5 AND COGNITIVE DECLINE AS A FUNCTION OF AGE IN MEN

The interaction term between age (continuous variable) at baseline, smoking, and time suggested differences in the effect of smoking for global cognition (P = .08) and executive function (P = .04) as a function of age. These findings are summarized in Figure 1, which shows the analyses reported in Table 2 (differences in cognitive decline between the smoking history categories with the never smokers as the reference group) but stratified by median age (55 years). There was some evidence that the impact of smoking on cognitive decline was weaker in the older group.

JOINT MODELS

These analyses assessed the effect of dropout, due to death or nonparticipation during the follow-up, on the association between smoking history and cognitive decline (eAppendix “Results” section). Joint model estimates of cognitive change were around 10% higher than those using mixed models alone, with larger differences seen in current smokers than in never smokers (Figure 2). The relative differences between the estimates from the mixed model and the joint models were more evident in the oldest group (>55 years), with estimates being 100% stronger in the joint models in this age group compared with 17% stronger in the youngest group.

Table 2. Association of Smoking History at Phase 5 (1997-1999) and Cognitive Change Over the Subsequent 10 Years

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Global Cognition</th>
<th>Memory</th>
<th>Vocabulary</th>
<th>Executive Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men (n = 5099)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>468</td>
<td>-0.09 (−0.15 to −0.03)</td>
<td>-0.05 (−0.16 to −0.06)</td>
<td>-0.04 (−0.09 to 0.01)</td>
</tr>
<tr>
<td>Recent ex-smokers</td>
<td>408</td>
<td>-0.04 (−0.09 to 0.02)</td>
<td>0.04 (−0.07 to 0.15)</td>
<td>0.00 (−0.05 to 0.05)</td>
</tr>
<tr>
<td>Long-term ex-smokers</td>
<td>1825</td>
<td>0.00 (−0.03 to 0.03)</td>
<td>-0.05 (−0.11 to 0.02)</td>
<td>0.00 (−0.03 to 0.02)</td>
</tr>
<tr>
<td>Estimates in never smokers</td>
<td>2398</td>
<td>-0.32 (−0.35 to −0.29)</td>
<td>-0.24 (−0.29 to −0.18)</td>
<td>0.02 (0.00 to 0.05)</td>
</tr>
<tr>
<td>Women (n = 2137)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>262</td>
<td>0.03 (−0.05 to 0.12)</td>
<td>0.04 (−0.14 to 0.21)</td>
<td>0.02 (−0.06 to 0.10)</td>
</tr>
<tr>
<td>Recent ex-smokers</td>
<td>191</td>
<td>0.01 (−0.08 to 0.10)</td>
<td>-0.03 (−0.22 to 0.16)</td>
<td>0.00 (−0.08 to 0.09)</td>
</tr>
<tr>
<td>Long-term ex-smokers</td>
<td>507</td>
<td>-0.01 (−0.07 to 0.05)</td>
<td>-0.01 (−0.14 to 0.11)</td>
<td>-0.02 (−0.07 to 0.04)</td>
</tr>
<tr>
<td>Estimates in never smokers</td>
<td>1177</td>
<td>-0.29 (−0.33 to −0.23)</td>
<td>-0.24 (−0.34 to −0.14)</td>
<td>0.04 (0.00 to 0.09)</td>
</tr>
</tbody>
</table>

a Estimates from a mixed model adjusted for educational level (ordinal variable, 5 levels), occupational position (categorical variable, 3 levels), marital status, and age at baseline. A negative value for cognitive change corresponds to a higher decline compared with that in the never smokers.

b Estimates in never smokers 1104 −0.29 (−0.34 to −0.24) −0.26 (−0.30 to −0.18) 0.04 (0.00 to 0.09) −0.36 (−0.41 to −0.30)

Table 3. Association Between Smoking Status Over the Follow-Up and 10-Year Cognitive Change

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Global Cognition</th>
<th>Memory</th>
<th>Vocabulary</th>
<th>Executive Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men (n = 4800)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent smokers</td>
<td>240</td>
<td>-0.12 (−0.19 to −0.04)</td>
<td>-0.15 (−0.29 to −0.01)</td>
<td>-0.04 (−0.10 to 0.03)</td>
</tr>
<tr>
<td>Intermittent smokers</td>
<td>106</td>
<td>-0.10 (−0.20 to 0.00)</td>
<td>-0.16 (−0.36 to 0.04)</td>
<td>0.00 (−0.08 to 0.09)</td>
</tr>
<tr>
<td>Quitters after phase 5</td>
<td>168</td>
<td>-0.04 (−0.13 to 0.03)</td>
<td>0.08 (−0.08 to 0.24)</td>
<td>0.08 (−0.09 to 0.25)</td>
</tr>
<tr>
<td>Estimates in never smokers</td>
<td>2242</td>
<td>-0.32 (−0.35 to −0.29)</td>
<td>-0.24 (−0.30 to −0.18)</td>
<td>0.02 (−0.01 to 0.04)</td>
</tr>
<tr>
<td>Women (n = 1993)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent smokers</td>
<td>128</td>
<td>0.01 (−0.11 to 0.12)</td>
<td>0.09 (−0.15 to 0.33)</td>
<td>0.03 (−0.08 to 0.14)</td>
</tr>
<tr>
<td>Intermittent smokers</td>
<td>16</td>
<td>0.03 (−0.09 to 0.04)</td>
<td>-0.53 (−1.21 to 0.15)</td>
<td>-0.23 (−0.54 to 0.09)</td>
</tr>
<tr>
<td>Quitters after phase 5</td>
<td>100</td>
<td>0.05 (−0.07 to 0.16)</td>
<td>-0.08 (−0.32 to 0.16)</td>
<td>0.00 (−0.11 to 0.10)</td>
</tr>
<tr>
<td>Estimates in never smokers</td>
<td>1104</td>
<td>-0.29 (−0.34 to −0.24)</td>
<td>-0.26 (−0.36 to −0.15)</td>
<td>0.04 (0.00 to 0.09)</td>
</tr>
</tbody>
</table>

a Smoking status at phase 9 is defined as persistent smokers (smokers at both phases 5 and 9), intermittent smokers (ex-smokers at phase 5 and current smokers at phase 9), and quitters (current smokers at phase 5 and ex-smokers at phase 9). If participants dropped out at phase 7, smoking status at phase 7 was used in the analysis using a similar definition. Participants without information on smoking status at phases 7 or 9 were excluded from this analysis (299 men and 144 women). Results among ex-smokers at both phases 5 and 9 are not shown.

b Estimates from a mixed model adjusted for educational level (ordinal variable, 5 levels), occupational position (categorical variable, 3 levels), marital status, and age at baseline.

c P < .05.
respect to never smokers in the same age group. The corresponding figure for participants older than 55 years was −0.04 (95% CI, −0.13 to 0.05).

For example, current smokers 55 years or younger experienced an additional decline in global cognition of −0.12 (95% CI, −0.19 to −0.05) with

Analyses restricted to those with a Mini-Mental State Examination score of 24 or more (n=7165) or those with complete data at all 3 waves of cognitive data yielded results similar to that in the main analysis (not shown).

Figure 1. Association between smoking history at phase 5 and cognitive change over the subsequent 10 years in men as a function of age group (reference group: never smokers). *Estimates were obtained from model 1 (results in Table 2) but this time separately in men 55 years or younger (squares) and older than 55 years (diamonds). For example, current smokers 55 years or younger experienced an additional decline in global cognition of −0.12 (95% CI, −0.19 to −0.05) with respect to never smokers in the same age group. The corresponding figure for participants older than 55 years was −0.04 (95% CI, −0.13 to 0.05).

Figure 2. Mixed and joint models showing standardized cognitive scores at baseline and 10-year cognitive decline in current and never smokers at phase 5 (1997-1999).

Sensitivity Analyses

Analyses restricted to those with a Mini-Mental State Examination score of 24 or more (n=7165) or those with complete data at all 3 waves of cognitive data yielded results similar to that in the main analysis (not shown).

Our analysis of data using 6 assessments of smoking status over 25 years and 3 cognitive assessments over 10 years presents 4 key findings. One, in men, smoking was associated with faster cognitive decline; analyses using pack-years of smoking suggested a dose-response relation. Two, men who continued smoking over the follow-up experienced greater decline in all cognitive tests. Three, men who quit smoking in the 10 years preceding the first cognitive measure were still at risk of greater cognitive decline, particularly in executive function. However, long-term ex-smokers did not show faster cognitive decline. Finally, our results show that the association between smoking and cognition, particularly at older ages, is likely to be underestimated owing to higher risk of death and dropout among smokers.

Our previous article, based on data from the first 2 waves of cognitive assessment, showed smoking in midlife to be associated with poor memory and a 5-year decline in reasoning abilities. We also showed long-term ex-smokers to have better memory and verbal fluency scores than never smokers. In the present article, the third wave of cognitive data allowed us to (1) estimate the association between smoking history and 10-year cognitive decline; (2) cover an age window from 45 to 80 years; and (3) use mixed models with multiple repeated measures rather than analysis of change using 2 waves of data. The third measurement reduces potential biases related to practice effects and regression to the mean, which are particularly encountered in studies with only 2 measurements. Thus, the present analyses provide more robust estimates of the impact of smoking on cognitive decline.

Comparison with Other Studies

At least 4 previous studies have examined the association between smoking and cognitive decline with cognition first assessed in midlife. In the 1946 British National Birth Cohort study, smoking was associated with a greater decline in memory but not visual search. In the Doetinchem Cohort Study, smokers had faster decline in memory, cognitive flexibility, and global cognition, but not processing speed. Finally, the ARIC MRI Study, the only other study, to our knowledge, with more than 2 waves of cognitive data in a nonelderly population, did not find smoking to influence cognitive decline. One possible explanation for the lack of association in the ARIC MRI Study is that the study population was composed mainly of women (62% of the total population). Our results show no association between smoking and cognitive decline in women, but the underlying reasons remain unclear. Some studies have reported sex differences in this association, while others report no differences. One explanation for the sex difference we observed might be the greater quantity of tobacco smoked...
by men. Indeed, the mean pack-years of smoking (36 vs 31; \(P = .05 \)) as well as the number of cigarettes smoked (19 vs 16; \(P = .007 \)) were higher in men than women. It is also possible that smoking clusters with other risk factors differently in men and women. Alcohol consumption greater than the recommended quantities was seen in 38.7% of male and 23.3% of female smokers; mean alcohol consumption in smokers was considerably higher in men than in women (23.0 vs 9.6 units/wk; \(P < .001 \)). Future research needs to explore possible reasons for these differences.

Few observational studies have distinguished long-term ex-smokers from recent ex-smokers. In the 1946 British National Birth Cohort study, long-term ex-smokers had better memory and slower decline in memory compared with never smokers, but in the Honolulu-Asia Aging study, long-term ex-smokers did not have a lower risk of cognitive impairment than never smokers, and recent ex-smokers had the same increased risk of impairment as current smokers. In the Doetinchem Cohort Study, no difference was found between recent ex-smokers, long-term ex-smokers, and never smokers, although the point estimates of decline increased steadily from never smokers to long-term ex-smokers, then to recent ex-smokers and smokers. Our results show that long-term ex-smokers did not have greater cognitive decline than never smokers while male recent ex-smokers had on average greater decline in executive function than never smokers. These results suggest that residual effects of smoking on cognition might wear off approximately a decade after smoking cessation. A recent nonrandomized trial of smoking cessation on 95 nonsmokers and 228 smokers aged 68 to 88 years found recent quitters (defined as a minimum of 18 smoking-free months over the 24-month period of follow-up) not to have greater cognitive decline than never smokers. The discrepancy with our results might be explained by factors such as the older and smaller study population in the trial as well as the use of a cognitive test battery (the Wechsler Memory Scale Logical Memory test and the Alzheimer’s Disease Assessment Scale) designed to assess changes in memory and symptoms of Alzheimer disease.

MECHANISMS

In the present study, the adverse impact of smoking was greater on executive function than memory or vocabulary. Executive function, an umbrella term for various complex cognitive processes involved in achieving a particular goal, has been shown to be particularly affected in vascular dementia. We assessed executive function using measures of reasoning and verbal fluency, as these tasks require the combination of different cognitive abilities such as memory, attention, and speed of information processing. Smoking is an important risk factor for vascular diseases and could influence executive function via vascular pathways. Nevertheless, the inclusion of heart rate (a marker of cardiovascular fitness), cardiovascular diseases, and cardiovascular risk factors such as blood pressure and cholesterol in the analysis did not attenuate the association with smoking. Although the mechanisms by which smoking affects cognitive decline remain unclear, it has been shown to be associated with periventricular and subcortical white matter lesion progression, themselves associated with greater cognitive decline, independently of other cardiovascular risk factors.

Another mechanism that could underlie the association between smoking and cognitive decline is lung function. Smoking is a risk factor for lung injuries that can increase risk of cognitive impairment and dementia. However, the association between smoking and cognitive decline in our study was not explained by lung function, measured by forced expiratory volume in 1 second. Because this measure was introduced only 5 years after the first cognitive assessment, further research is required to examine this potential mechanism in greater detail.

INFLUENCE OF DROPOUT

In longitudinal studies, dropout is common and death is also a cause of sample attrition, particularly in older populations. Dropout is a potential source of bias if it is nonrandom, in that it is associated with either the exposure and/or the outcome under investigation, independently of observed data. Individuals who drop out are more likely to have health problems and experience greater cognitive decline. Smoking history in our data was associated with both mortality and dropout during the follow-up, suggesting that cognitive decline may be underestimated among smokers. Our results from the joint models of cognitive decline and dropout are consistent with this possibility; the estimated differences in cognitive change between current smokers and never smokers were 1.2 to 1.5 times larger than those from the mixed models. Furthermore, in older men, mixed models suggested weaker association between smoking and cognitive decline compared with the younger group. These estimates increased by up to 100% when information on dropouts was included in the joint models, thus reducing the apparent difference between the younger and older men in the association between smoking and cognitive decline. These results illustrate the selection biases encountered in studies investigating the association between smoking, a strong risk factor for mortality, and cognitive aging in the elderly population. Indeed, such studies have led to speculation as to whether smoking is a risk factor for dementia or whether nicotine has a protective effect on the brain. This confusion stems from the fact that smokers susceptible of dying or developing dementia may already have done so by the age of inclusion in aging studies, and thus, the group of elderly participants free of dementia at baseline in aging studies is depleted of susceptible smokers. Our results on cognitive decline in a nonelderly population might therefore better capture the potential impact of smoking on cognitive function. Further research on elderly populations, possibly even reanalysis of published data, using joint models is needed to understand the impact of smoking on cognitive decline.

LIMITATIONS

Our study has limitations. First, although the sample covered a wide socioeconomic range, with annual full-time
Much research on uncovering risk factors for dementia or adverse cognitive aging profiles has been carried out in elderly populations. It is increasingly recognized that age-related cognitive pathologies such as dementia result from long-term processes, perhaps beginning as long as 20 to 30 years before the clinical diagnosis of dementia. Our study illustrates the importance of examining risk factors for cognitive decline much earlier in the life course. However, cognitive tests and age-specific norms for detecting “abnormal” cognitive decline do not yet exist. Thus, it is difficult to quantify the clinical significance of our findings. We observe that the effect size associated with smoking is similar to that associated with 10 years of age. The extent to which the steeper cognitive trajectories observed in smokers will lead to dementia later in life cannot yet be addressed using our data and is an important research question.

Our results show that, compared with never smokers, middle-aged male smokers are likely to experience faster 10-year cognitive decline in global cognition and executive function. Intermittent smokers and recent ex-smokers also exhibited greater cognitive decline, although no residual adverse effect of smoking on cognitive decline was observable in the group of men who stopped smoking 10 years prior to cognitive testing. Public health messages on smoking should continue to target smokers at all ages.

Correspondence: Séverine Sabia, PhD, Department of Epidemiology and Public Health, University College Lon-

don, 1-19 Torrington Pl, London WC1E 6BT, England (s.sabia@ucl.ac.uk).

Author Contributions: Dr Sabia had full access to all of the data in the study and performed the statistical analysis. She takes responsibility for the integrity of the data and the accuracy of the data analysis. All the authors had full access to all the data in the study.

Financial Disclosure: None reported.

Funding/Sponsor: Dr Singh-Manoux is supported by a European Young Investigator Award from the European Science Foundation and National Institute on Aging, National Institutes of Health grants R01AG013196 and R01AG034454. Dr Kivimaki is supported by the Academy of Finland, the Bupa Foundation, and National Institutes of Health grants R01HL036310 and R01AG034454. Mr Shipley is supported by the British Heart Foundation. Ms Head is supported by National Institute on Aging, National Institutes of Health grant R01AG013196. The Whitehall II study is also supported by British Medical Research Council grant G0902037.

Role of the Sponsors: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of data; and preparation, review, or approval of the manuscript.

REFERENCES

