Basal Cell Carcinoma

Stressful Life Events and the Tumor Environment

Christopher P. Fagundes, PhD; Ronald Glaser, PhD; Sheri L. Johnson, PhD; Rebecca R. Andridge, PhD; Eric V. Yang, PhD; Michael P. Di Gregorio, MS; Min Chen, MS; David R. Lambert, MD; Scott D. Jewell, MD; Mark A. Bechtel, MD; Dean W. Hearne, MD; Joel B. Herron, MD; Janice K. Kiecolt-Glaser, PhD

Context: Child emotional maltreatment can result in lasting immune dysregulation that may be heightened in the context of more recent life stress. Basal cell carcinoma (BCC) is the most common skin cancer, and the immune system plays a prominent role in tumor appearance and progression.

Objective: To address associations among recent severe life events, childhood parental emotional maltreatment, depression, and messenger RNA (mRNA) coding for immune markers associated with BCC tumor progression and regression.

Design: We collected information about early parent-child experiences, severe life events in the past year as assessed by the Life Events and Difficulties Schedule, depression, and mRNA for immune markers associated with BCC tumor progression and regression.

Setting: University medical center.

Participants: Ninety-one patients with BCC (ages, 23-92 years) who had a previous BCC tumor.

Main Outcome Measures: The expression of 4 BCC tumor mRNA markers (CD25, CD3ε, intercellular adhesion molecule 1, and CD68) that have been linked to BCC tumor progression and regression were assessed in BCC tumor biopsy specimens.

Results: Both maternal and paternal emotional maltreatment interacted with the occurrence of severe life events to predict the local immune response to the tumor (adjusted \(P = .009 \) and \(P = .03 \), respectively). Among BCC patients who had experienced a severe life event within the past year, those who were emotionally maltreated by their mothers (\(P = .007 \)) or fathers (\(P = .02 \)) as children had a poorer immune response to the BCC tumor. Emotional maltreatment was unrelated to BCC immune responses among those who did not experience a severe life event. Depressive symptoms were not associated with the local tumor immune response.

Conclusions: Troubled early parent-child relationships, in combination with a severe life event in the past year, predicted immune responses to a BCC tumor. The immunoreactivity observed in BCCs and the surrounding stroma reflects an anti–tumor-specific immune response that can be altered by stress.

Arch Gen Psychiatry. 2012;69(6):618-626

Stressful events and the negative emotions they generate can dysregulate immunity sufficient to produce clinically significant alterations.\(^1\) Acute and chronic stressors can impair vaccine responses, slow wound healing, promote inflammation, and dampen markers of both innate and adaptive immune function.\(^2,6\) Those who experienced adverse childhood events are particularly sensitive to subsequent stressors.\(^7,10\)

Converging evidence suggests that highly stressful events early in life can have long-term consequences for immune system regulation. Childhood maltreatment has been associated with elevated inflammation and higher antibody titers to herpes simplex virus type 1 (reflecting poorer cellular immune function).\(^11-15\) Child maltreatment also has been linked to multiple diseases, including cancer; immune dysregulation likely contributes to these effects.\(^16\)

Skin cancer, the most common cancer in the United States, is more prevalent than all other malignant tumors combined.\(^17,18\) The incidence of basal cell carcinoma (BCC), the most common skin cancer, has been doubling every 14 years.\(^19\) The risk of subsequent BCCs after an initial tumor is substantial, with 44% of patients developing additional lesions within 3 years.\(^20\) Risk factors for the first or index BCC include age, childhood sun exposure, fair skin, and male sex; however, subsequent tumors are not reliably related to these variables.\(^20,21\)

The immune system plays a prominent role in BCC tumor appearance and progression.\(^22\) A significant increase in the

Author Affiliations are listed at the end of this article.
expression of CD3ε (total T cells) and CD25 (interleukin [IL] 2 receptor) has been observed in actively regressing tumors compared with those showing no current or past regression.23 Furthermore, increased expression of intercellular adhesion molecule 1 (ICAM-1) and infiltration of CD68+ cells (macrophages) have been described during BCC tumor regression after treatment with imiquimod (a topical cream that enhances the local immune response against BCCs).24,25 Histologic evaluations of excised BCCs reveal that 50% provide evidence of at least partial regression. The immunoreactivity observed in BCCs and the surrounding stroma reflects an anti–tumor-specific immune response.22

Immunosuppressive treatments clearly increase BCC incidence. Organ transplant recipients have a 10-fold risk compared with the general population.26 However, even much milder alterations in cell-mediated immunity can be consequential. For example, oral glucocorticoid therapy boosts BCC incidence, likely through decreased immunosurveillance.27,28

Chronic stressors can be a powerful immunomodulator during critical developmental periods, setting the stage for future alterations in skin cancer tumors. Mice that had been subjected to restraint stress subsequently developed UV-induced squamous cell carcinoma more rapidly than nonstressed control mice.29 Furthermore, stressed mice also had a poorer immune response as assessed by messenger RNA (mRNA) immune markers in their tumors compared with controls. Indeed, even well after the stressor ended, the tumors of stressed mice did not regress like those of controls, suggesting that stressors early in development can continue to influence the immune response long after stress exposure.

Early stressful experiences combined with subsequent stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or stress may be particularly detrimental. Seligman and Visintainer30 exposed young rats to inescapable, escapable, or
illnesses. For example, life stressors as-

tual factors that might intensify the meaning and implications

tual stressors, while avoiding some of the biases that could oc-

ential stressors, with a goal of understanding the environmen-

III RNase H-reverse transcriptase (Life Technologies). The cDNA

REAL-TIME PCR

TagMan Gene Expression Assays (Applied Biosystems) were used

PCR).

PSYCHOLOGICAL AND

HISTORY OF PARENTAL EMOTIONAL MALTREATMENT

Detailed life event interviews were conducted to assess severe

leakocytes previously characterized to express the genes of in-

The mRNA levels among samples were compared using

mRNA. The mRNA levels among samples were compared using

correlations of 0.80 throughout the study. Inconsistencies across

raters were reviewed, and ongoing training was conducted to

ensure that raters followed guidelines carefully. Our study fo-

focused on the presence of at least 1 severe life event (as defined

by severity ratings of 1 or 2) that was independent of the BCC

and other illnesses. Although severe events can differ in indi-

viduals, the most common severe life events include the loss

of a core confidant relationship, death of a family member, mar-

tal separation or divorce, or the loss of employment for the

primary wage earner in the family. Because our goal was to docu-

ment that environmental stressors can predict changes in disease

status, we focused on events that were not related to illness to

ensure that we were capturing stressors that were unrelated to

an underlying biological vulnerability.

Although the LEDS takes approximately 10 hours for in-

terviews, transcribing, and rating, the instrument’s well-
documented validity suggests that this care is warranted. It has

significantly higher reliability and validity compared with self-

report measures.

The depression module of the nonpatient version of the SCID

(SCID-NP) was administered by clinically trained interview-

ers to make relatively rapid and valid DSM-IV diagnoses.

Inter-rater reliability for SCID-NP diagnoses was calculated using

randomly selected audiotapes for 20% of the participants. There

was greater than 85% agreement for each of the 5 diagnoses

tested, with the Cohen k ranging from 0.64 to 0.69. This sub-

stantial inter-rater agreement was confirmed with the McNemar

test for marginal proportions (P > .99 for all diagnoses).

A history of parental emotional maltreatment was assessed with

the antipathy and neglect subscales of the Childhood Experi-

ence of Care and Abuse Questionnaire (CECA.Q), which ex-

amines emotional maltreatment by parents from birth to 17 years

of age. All items from the questionnaire were derived from the

well-validated CECA interview. On a 5-point Likert-type scale

ranging from “yes, definitely” to “no, not at all,” the antipathy

(mother and father) subscale assessed hostile and rejecting par-

enting (eg, “She was very critical of me” and “He made me feel

unwanted”), and the neglect subscale assessed the extent to which

parents provided material or emotional support for their chil-

dren (eg, “He was concerned about my whereabouts” and “She
tried to make me feel better when I was upset”). A 1-U increase

in score indicates greater emotional neglect (eg, was neglected

more), and a 1-U increase in score indicates greater emotional

maltreatment (eg, was neglected less). The CECA.Q possesses good
test-retest reliability and alternate forms of reliability when compared with the CECA

questionnaire in both community and clinical populations. Furthermore, the antipathy and neglect

subscales of the CECA.Q converge with other popular measures of childhood adversity,

including the Parental Bonding Instrument, suggesting this measure possesses good convergent validity.

The question-

naire instructs respondents to fill out the CECA.Q in refer-

tance to the mother and father figure who they were “with the

longest” or the one they found “most difficult to live with.” Ninety-four percent of participants filled out the ques-

 tionnaire instructs respondents to fill out the CECA.Q in refer-

ance to the mother and father figure who they were “with the

longest” or the one they found “most difficult to live with.” Ninety-four percent of participants filled out the ques-

 tionnaire instructs respondents to fill out the CECA.Q in refer-

ance to the mother and father figure who they were “with the

longest” or the one they found “most difficult to live with.” Ninety-four percent of participants filled out the ques-

 tionnaire instructs respondents to fill out the CECA.Q in refer-

ance to the mother and father figure who they were “with the

longest” or the one they found “most difficult to live with.” Ninety-four percent of participants filled out the ques-

 tionnaire instructs respondents to fill out the CECA.Q in refer-

ance to the mother and father figure who they were “with the

longest” or the one they found “most difficult to live with.” Ninety-four percent of participants filled out the ques-

 questionnaires in reference to their biological mother, and 93% re-

sponded in reference to their biological father.

The Center for Epidemiological Studies Depression Scale

(CESS-D) provided data on current depressive symptoms. Studies have shown acceptable test-retest reliability and excellent con-

struct validity. It has been widely used in cancer studies.

The Pittsburgh Sleep Quality Index provided data on sleep

quality and sleep disturbances.
The Older Adults Resources Survey Multidimensional Functional Assessment Questionnaire assessed underlying diseases and associated medications. Several studies have found excellent agreement between self-reports and hospital or physician records for specific conditions, including myocardial infarction, stroke, and diabetes mellitus.53,54

STATISTICAL ANALYSIS

The mRNA markers (levels of CD25, CD3ε, ICAM-1, and CD68) were highly correlated, with pairwise Spearman correlation coefficients ranging from 0.78 to 0.91 and a Cronbach α of 0.95 (using log-transformed values). Thus, a single composite mRNA index was created for each study participant using z scores. For each participant, the z scores for each base 10 log-transformed mRNA marker were calculated, and these 4 z scores were averaged to produce the summary construct. These cell surface markers operate together in vivo; this combined index reflects this coordinated immune response to the BCC tumor. We used this mean mRNA z score as the primary outcome of interest. Secondary analyses used depressive symptoms (CES-D) scores as the outcome.

Linear regression analyses were conducted to evaluate associations among parental emotional maltreatment, the experience of severe life events, and each outcome. The LEDS life events variable was dichotomized at 0 vs 1 or more in the past year. Adjusted models controlled for age and sex. Models for the mRNA z score index additionally controlled for smoking status, alcohol consumption, comorbid conditions, sleep quality (Pittsburgh Sleep Quality index), and BCC tumor type. Residual plots were examined for all models, and when the normality assumption was found to have failed, outcomes were log-transformed. The α was set to .05, and 2-sided tests were conducted. All analyses were performed with SAS statistical software, version 9.1 (SAS Institute, Inc).

RESULTS

Participant sample characteristics are summarized in Table 1. There were 48 men and 43 women in the sample, most of whom had at least some college education (72 [79%]). This cancer occurs among those with fair skin, and all participants self-described themselves as white.55 The mean (SD) age at interview was 58.2 (13.5) years. The 91 participants were generally healthy with few comorbid conditions: asthma (5 [5%]), emphysema (2 [2%]), heart disease (8 [9%]), hypertension (27 [30%]), kidney disease (2 [2%]), liver disease (1 [1%]), stroke (2 [2%]), and thyroid disease (4 [4%]). Comorbid conditions did not include psychiatric conditions. Neither paternal nor maternal emotional maltreatment was associated with any outcome after adjusting for age and sex. Secondary analyses using depressive symptoms (CES-D) scores as the outcome indicated no associations with any outcome.

Table 1. Characteristics of the 91 Study Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex, No. (%)</td>
<td>43 (47)</td>
</tr>
<tr>
<td>White race, No. (%)</td>
<td>91 (100)</td>
</tr>
<tr>
<td>Educational level, No. (%)</td>
<td>19 (21)</td>
</tr>
<tr>
<td>High school or less</td>
<td>26 (29)</td>
</tr>
<tr>
<td>College degree</td>
<td>46 (51)</td>
</tr>
<tr>
<td>Marital status, No. (%)</td>
<td>Single 7 (8)</td>
</tr>
<tr>
<td>Married</td>
<td>69 (76)</td>
</tr>
<tr>
<td>Common law</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Divorced</td>
<td>9 (10)</td>
</tr>
<tr>
<td>Widowed</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Age, y</td>
<td>Mean (SD) 58.2 (13.5)</td>
</tr>
<tr>
<td>Range 23-92</td>
<td></td>
</tr>
<tr>
<td>No. of LEDS events, No. (%)</td>
<td>0 70 (77)</td>
</tr>
<tr>
<td>1</td>
<td>17 (19)</td>
</tr>
<tr>
<td>≥2</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Time from most recent LEDS event to biopsy, mo (n = 21)</td>
<td>Mean (SD) 5.5 (3.2)</td>
</tr>
<tr>
<td>Range</td>
<td>0.1-11</td>
</tr>
<tr>
<td>History of major depression, No. (%)</td>
<td>30 (33)</td>
</tr>
<tr>
<td>CES-D score</td>
<td>Mean (SD) 7.8 (9.0)</td>
</tr>
<tr>
<td>Median</td>
<td>6 (2.9)</td>
</tr>
<tr>
<td>Range 0.4-49</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh Sleep Quality index</td>
<td>Mean (SD) 4.9 (2.7)</td>
</tr>
<tr>
<td>Range</td>
<td>0-15</td>
</tr>
<tr>
<td>Any comorbid conditions, No. (%)</td>
<td>65 (71)</td>
</tr>
<tr>
<td>Current smoker, No. (%)</td>
<td>10 (11)</td>
</tr>
<tr>
<td>Consume alcohol, No. (%)</td>
<td>46 (51)</td>
</tr>
<tr>
<td>Emotional maltreatment according to the CECA.Q</td>
<td>Mother Mean (SD) 12.6 (5.5)</td>
</tr>
<tr>
<td>Range 8-31.5</td>
<td></td>
</tr>
<tr>
<td>Father Mean (SD) 14.4 (6.5)</td>
<td></td>
</tr>
<tr>
<td>Range 8-31</td>
<td></td>
</tr>
<tr>
<td>Messenger RNA Levels</td>
<td>CD25 Median (IQR) 38 (12-103)</td>
</tr>
<tr>
<td>Range 2.5-1284</td>
<td></td>
</tr>
<tr>
<td>CD3ε Median (IQR) 0.23 (0.10-0.56)</td>
<td></td>
</tr>
<tr>
<td>Range 0.020-16</td>
<td></td>
</tr>
<tr>
<td>ICAM-1 Median (IQR) 0.24 (0.13-0.50)</td>
<td></td>
</tr>
<tr>
<td>Range 0.015-3.5</td>
<td></td>
</tr>
<tr>
<td>CD68 Median (IQR) 1.5 (0.56-3.6)</td>
<td></td>
</tr>
<tr>
<td>Range 0.11-38</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
treatment was associated with age (mothers: \(r = 0.14, P = .20\), fathers: \(r = 0.17, P = .11\)). Parental maltreatment was not associated with the experience of any severe life events (mothers: \(r = 0.10, P = .35\), fathers: \(r = 0.17, P = .10\)).

Table 2 summarizes the association of maternal emotional maltreatment and life events with the mean mRNA \(z\) score. In the unadjusted model, a significant interaction was found between maternal emotional maltreatment and the experience of any severe life events, and this interaction persisted in the adjusted model (unadjusted \(P = .02\), adjusted \(P = .009\)). The experience of severe life events led to a negative association between maternal emotional maltreatment and mRNA \(z\) score. In the adjusted model, a 1-U increase in maternal emotional maltreatment was not significantly associated with mRNA \(z\) score for participants with no life events (\(B = 0.020; 95\% \text{ CI, } -0.024\) to 0.065; \(P = .37\)). However, for participants with 1 or more severe life events, a 1-U increase in maternal emotional maltreatment score led to a 0.086-point decrease in mRNA \(z\) score (95% CI, −0.15 to −0.017; \(P = .02\)). This interaction is illustrated in the **Figure**.

Table 3 summarizes a similar interaction between paternal emotional maltreatment and life events in predicting mRNA \(z\) score (unadjusted \(P = .02\), adjusted \(P = .03\)). In the adjusted model, a 1-U increase in paternal emotional maltreatment was significantly associated with a 0.063-point decrease in mRNA \(z\) score (95% CI, −0.12 to −0.010; \(P = .02\)) for participants who had experienced any severe life events. Participants who had not experienced any life events did not have a significant relationship between paternal emotional maltreatment and mRNA \(z\) score (\(B = 0.009; 95\% \text{ CI, } -0.031\) to 0.050; \(P = .65\)).

Additional analyses evaluated the effect of removing paternal emotional maltreatment from the adjusted model in Table 2 and maternal emotional maltreatment from the adjusted model in Table 3 because paternal and maternal emotional maltreatment were moderately correlated (\(r = 0.42, P < .001\)). Removing paternal emotional maltreatment had negligible effects on estimates for maternal emotional maltreatment and vice versa in both mRNA \(z\) score models. We also considered an interaction between maternal and paternal emotional maltreatment to assess any added effect when both parents emotionally maltreated their children; results were nonsignificant (\(P = .34\)).

Post hoc analyses were performed by repeating the models in Tables 2 and 3 using each of the mRNA markers (log-transformed) as the outcome (8 total separate adjusted regression models). Results matched those of the composite models and were consistent across all mRNA variables. The emotional maltreatment by LEDS interaction significantly predicted each mRNA variable in all but 1 model; the only nonsignificant interaction was in the model using paternal emotional maltreatment predicting CD3\(\varepsilon\), and the effect was in the expected direction (\(P = .13\)).

A separate linear regression model to assess the association among parental emotional maltreatment, severe life events, and CES-D is presented in **Table 4**. The in-

Table 2. Association of Maternal Emotional Maltreatment and LEDS Events With Mean Messenger RNA \(z\) Score\(^a\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unadjusted Model ((R^2 = 0.08))</th>
<th>Adjusted Model ((R^2 = 0.28))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate (95% CI)</td>
<td>(P) Value</td>
</tr>
<tr>
<td>Maternal emotional maltreatment</td>
<td>0.0077 (−0.033 to 0.048)</td>
<td>.71</td>
</tr>
<tr>
<td>Any LEDS events</td>
<td>0.98 (−0.099 to 2.1)</td>
<td>.07</td>
</tr>
<tr>
<td>Maternal emotional maltreatment (\times) any LEDS events</td>
<td>−0.10 (−0.18 to −0.019)</td>
<td>.02</td>
</tr>
<tr>
<td>Paternal emotional maltreatment</td>
<td>−0.013 (−0.046 to 0.021)</td>
<td>.45</td>
</tr>
<tr>
<td>Age, y</td>
<td>−0.0019 (−0.017 to 0.013)</td>
<td>.81</td>
</tr>
<tr>
<td>Female (reference: male)</td>
<td>−0.45 (−0.86 to −0.038)</td>
<td>.03</td>
</tr>
<tr>
<td>Comorbid conditions</td>
<td>−0.060 (−0.28 to 0.16)</td>
<td>.59</td>
</tr>
<tr>
<td>Smoker (reference: nonsmoker)</td>
<td>−0.037 (−0.63 to 0.56)</td>
<td>.90</td>
</tr>
<tr>
<td>Drinks alcohol (reference: nondrinker)</td>
<td>0.037 (−0.35 to 0.42)</td>
<td>.85</td>
</tr>
<tr>
<td>Pittsburgh Sleep Quality index</td>
<td>0.034 (−0.036 to 0.11)</td>
<td>.34</td>
</tr>
<tr>
<td>Tumor type (reference: mixed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficial</td>
<td>−0.038 (−0.90 to 0.14)</td>
<td>.15</td>
</tr>
</tbody>
</table>

Abbreviation: LEDS, Life Events and Difficulties Schedule.

\(^a\)Results from linear regression models (91 patients).
interaction between parental emotional maltreatment and life events predicting depressive symptoms was not significant ($P = .35$ for maternal emotional maltreatment and $P = .41$ for paternal emotional maltreatment), so we eliminated the interaction term from Table 4 as is the standard convention.56 Paternal emotional maltreatment was positively associated with depressive symptoms. A 1-U increase in paternal emotional maltreatment was associated with a 4.0% increase in the CES-D score ($P = .08$). Neither maternal emotional maltreatment nor severe life events were significantly associated with CES-D, although slope estimates were in the expected direction. A history of major depression (as assessed by the SCID) was not associated with maternal emotional maltreatment (Wilcoxon rank sum, $P = .80$), paternal emotional maltreatment (Wilcoxon rank sum, $P = .08$), or severe life events (χ^2 test, $P = .27$).

The CES-D scores were not associated with mRNA z score in unadjusted or adjusted models and did not mediate the effects of parental emotional maltreatment on mRNA z score (results not shown). The same conclusions held when we looked at the effect of a history of major depression (as assessed by the SCID) in place of CES-D. Adding CES-D or history of major depression as a predictor did not change the point estimates or significance of parental or maternal emotional maltreatment or life events or their interaction in the models presented in Tables 2 and 3. The current responsiveness to the immune system.22 Studies addressing control of BCC tumor progression show that in-

Our results show that among BCC patients who experienced a severe stressor in the past year, those who were emotionally maltreated by their mothers or fathers as children were more likely to have poorer immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emotionally maltreated by one’s father was also linked to higher depressive symptoms. However, depressive symptoms and a history of depression were not directly linked to the BCC immune responses related to the BCC tumor. Women had a poorer immune response to the BCC tumor than men; most of the prior literature on BCC immune responses as reflected in lower levels of mRNA for CD25, CD3ε, ICAM-1, and CD68 to their BCC tumors. Being emo...
flamatory cells in the peritumoral milieu and those that infiltrate BCC tumors have important roles. Although key risk factors for a person's first BCC include childhood sun exposure, fair skin, and male sex, subsequent tumors are not reliably related to these variables. Psychological stress may play an important role in the tumor environment for this immunogenic tumor and have important implications for subsequent BCC tumors. Future studies should further investigate the clinical implication of the current findings.

Mechanistically, troubled parent-child relationships can alter the set point for the stress response system. Individuals who had adverse childhood relationships are more physiologically reactive to stress as adults compared with those who did not. As described previously, early life adversity has been linked to subsequent dysregulated immune function in adults and physiologic responsiveness to subsequent stressors.

We examined mRNAs encoding for proteins that are expressed on various immune cells and have been implicated in their function; mRNAs carry the information that specify the properties of the protein end product. The expression of mRNAs for CD3ε, CD68, CD25, and ICAM-1 indicates a coordinated immune response to the BCC tumor. In general, BCC tumor tissue has higher levels of mRNA immune markers than healthy tissue because the immune system is responding to the tumor. The presence of these markers in BCC tumors is suggestive of infiltration of immune cells as part of the antitumor immune response.

This study extends animal work demonstrating that stress, especially early in life, can affect tumor growth and progression. Our findings complement work demonstrating that early life stress increases vulnerability to tumor development when exposed to an additional stressor in adulthood.

Our findings also complement other studies that have addressed the relationship between psychosocial factors and immune markers within the tumor environment. Patients with ovarian cancer who were more distressed had poorer natural killer cell activity in tumor-infiltrating lymphocytes than those who were less distressed. Furthermore, those who had more social support had greater natural killer cell activity in tumor-infiltrating lymphocytes than those who had less support. To our knowledge, the current study is the first to show that early life stressors can also influence the tumor environment in humans.

Our work may have broader implications for other cancers. In a large, prospective study with more than 1 million participants, those with nonmalignant skin cancers were 20% to 30% more likely to die of other noncutaneous cancers; the relative risk for mortality from other cancers was 1.30 in men and 1.26 in women. A recent meta-analysis reported that individuals who were more stress reactive were at greater risk for cancer mortality than those who were not. Accordingly, BCCs may have some prognostic value for broader cancer risks.

These findings could also be relevant to recent work linking child maltreatment with cancer incidence. One study demonstrated a dose-response relationship between the number of exposures to abuse or household dysfunction during childhood and cancer incidence. In other work, those who were physically abused as children had 49% higher odds of having a cancer diagnosis than those who were not abused. The findings remained after adjusting for health behaviors, such as smoking and exercise; immune dysregulation may have contributed to this link.

One major strength of this study was the use of the LEDS to assess life events. The LEDS allowed us to exclude life events that were related to underlying medical issues. Furthermore, because the LEDS uses objective ratings of stress severity, biases related to depressive symptoms do not influence people's ratings of their life stress. Accordingly, the LEDS allowed us to assess links between severe stressors and immune function with control over biased reporting of stress related to depressive symptoms and poor health.

Despite the potential importance of understanding how early adverse experiences influence cancer risk, several limitations should be acknowledged. Our participants could have been biased when reporting the degree to which their parents emotionally maltreated them as children. However, adults generally underestimate rather than overreport childhood abuse and neglect. In addition, many other forms of child adversity that could also affect immune function have not been assessed in the current study, such as low socioeconomic status. Future work should take these factors into account as well. Another limitation is our exclusive focus on BCC tumors. We chose this disease because of the known immunogenic properties of BCC tumors, but future work assessing other types of tumors will be important to generalize our findings to cancer more broadly. Finally, our sample was exclusively white, which is not surprising given the nature of the disease.

Basal cell carcinoma is a substantial public health concern; it is highly prevalent and carries risks of scarring and disfigurement. Furthermore, it may be prognostic for other cancers. A better understanding of the factors that contribute to BCC incidence and recurrence is clinically relevant. Troubled early parental experiences are linked to greater stress reactivity in adulthood and poorer immune regulation. This is the first study, to our knowledge, to show that troubled early parental experiences, in combination with a severe life event in the past year, predict local immune responses to a BCC tumor. These data complement and expand increasing evidence that the consequences of early parental experiences extend well beyond childhood.

Submitted for Publication: June 30, 2011; final revision received October 24, 2011; accepted October 26, 2011.

Author Affiliations: Institute for Behavioral Medicine Research (Drs Fagundes, Glaser, Yang, and Kiecolt-Glaser, Mr Di Gregorio, and Ms Chen), Departments of Molecular Virology, Immunology, and Medical Genetics (Drs Glaser and Yang), Internal Medicine (Drs Glaser, Lambert, Bechtel, Hearne, and Herron), Pathology (Dr Jewell), and Psychiatry (Dr Kiecolt-Glaser), Divisions of Biostatistics (Dr Andridge), Pulmonary, Allergy, Critical Care and Sleep Medicine (Dr Yang), and...
Dermatology (Drs Lambert, Bechet, Hearne, and Herron), and Comprehensive Cancer Center (Drs Glaser, Yang, and Kiecolt-Glaser), The Ohio State University Medical Center, Columbus; and Department of Psychology, University of California, Berkeley (Dr Johnson).

Correspondence: Janice K. Kiecolt-Glaser, PhD, Institute for Behavioral Medicine Research, Ohio State University College of Medicine, 460 Medical Center Dr, Room 130C, Columbus, OH 43210-1228 (Janice.Kiecolt-Glaser@osumc.edu).

Financial Disclosure: None reported.

Funding/Support: This study was supported in part by grant CA100243 from the National Cancer Institute (Dr Glaser), The Gilbert and Kathryn Mitchell Endowment (Dr Glaser), grant CA16058 from the Ohio State University Comprehensive Cancer Center, and Postdoctoral Fellowship Grant PF-11-007-01-CPPB from the American Cancer Society (Dr Fagundes).

Online-Only Material: Visit http://www.archgenpsychiatry.com to listen to an author podcast about this article.

Additional Contributions: We thank Gallen Marshall, MD, for his helpful suggestions.

REFERENCES
