The Effects of Seasons and Light Therapy on G Protein Levels in Mononuclear Leukocytes of Patients With Seasonal Affective Disorder

Sofia Avissar, PhD; Gabriel Schreiber, MD, PhD; Yakov Nechamkin, MD; Isaac Neuhaus, BA; Gregory K. Lam, BS; Paul Schwartz, MD; Erick Turner, MD; Jeffery Matthews, MD; Susana Naim, MD; Norman E. Rosenthal, MD

Background: Information-transducing heterotrimeric G proteins have been implicated previously in the mechanism of action of mood stabilizers and in the pathophysiology of mood disorders. Mononuclear leukocytes of patients with unipolar and bipolar depression have been characterized by reduced measures of the stimulatory and inhibitory G proteins. In this study, patients with seasonal affective disorder (SAD) were measured for mononuclear leukocyte G protein levels while depressed during the winter, following light therapy, and in remission during the summer.

Methods: Twenty-six patients with SAD and 28 healthy subjects were assessed in the study. The immunoreactivities of Gsα, Giα, and Gβ subunit proteins were determined by Western blot analysis of mononuclear leukocyte membranes with selective polyclonal antibodies for the various G subunit proteins, followed by densitometric quantitation using an image analysis system.

Results: Untreated patients with SAD and winter, atypical-type depression showed significantly reduced mononuclear leukocyte immunoreactive levels of Gsα and Giα proteins, similar to previous observations in patients with nonseasonal major depression. The reduced G protein levels were normalized with 2 weeks of light therapy. The same patients while in remission during the summer had G protein levels that were similar to those of healthy subjects.

Conclusions: G protein–immunoreactive measures in patients with SAD are suggested as a state marker for winter depression, which is normalized by light treatment and during the summer. We speculate that light may exert its effects via normalization of transducin (Gt protein) levels, which are thought to be reduced in winter depression.

Arch Gen Psychiatry. 1999;56:178-183

Seasonal Affective Disorder (SAD) is a mood disorder characterized by recurrent episodes of winter depression, with remission or hypomanic periods in the spring and summer.¹ Patients with SAD differ from patients with melancholia in their clinical profiles (SAD patients overeat, crave carbohydrates, gain weight, sleep more, and are tired frequently), as well as in their biological characteristics (eg, normal dexamethasone suppression test responses, normal responses to thyrotropin-releasing hormone challenge tests, and normal rapid eye movement sleep latency), which resemble those of patients with atypical depression.¹ The efficacy of phototherapy for SAD has been generally acknowledged.²,³

Although there is no consensus on the pathophysiology of SAD or on the mechanism of action of light therapy, the mechanisms that have been suggested to account for these phenomena generally involve altered primary messenger function: abnormal brain serotonergic transmission,⁴ reduced sympathetic system arousal,³ and underactive hypothalamic-pituitary-adrenal axis functioning.⁶

The family of heterotrimeric G proteins is a crucial point of convergence in the transmission of signals from a variety of primary messengers and their membrane receptors to a series of downstream cellular events, including intracellular second messenger effector enzymes and ionic channels⁵ (Figure 1). The increasing interest in the clinical perspective of altered G protein function has yielded important findings concerning the involvement of G proteins in the pathophysiology of mood disorders and in the biochemical mechanisms underlying the treatment of these disorders. We found that the function of receptor-coupled G proteins was altered by treatment with lithium⁶,¹¹ and other antidepressant medications.¹ thirteen Studies by other groups, generally in agreement with these results, implicate the involvement of G proteins in...
lithium's mechanism of action. Increased G protein measures were detected in mononuclear leukocytes (MNLs) of patients with mania and in postmortem cerebral cortices of bipolar patients. Reduced functional measures of G proteins were found in MNLs of patients with major depressive disorder. Although conflicting results were obtained concerning G protein immunoreactive levels in MNLs of patients with major depression, a larger study has detected reduced levels of Gα and Gα proteins in MNLs of depressed patients that correlated with the severity of depression and with reductions in the functional measures of these proteins. Quantitative and functional measures of G proteins in human MNLs were found to be age independent.

This study attempts to characterize G protein levels in peripheral blood elements of patients with SAD by addressing the following questions: (1) Do reduced G protein levels, which are characteristic of MNLs of patients with nonseasonal, typical depression, also appear in patients with SAD, whose depressive symptoms are generally described as atypical? (2) Does light therapy, which is known to improve depressive symptoms in patients with SAD, normalize any alterations in MNL G protein levels detected in depressed patients with SAD? (3) Do any alterations in MNL G protein levels detected in depressed patients with SAD reflect trait or state characteristics? Toward this end, patients with SAD were followed up with measurement of MNL G protein levels while depressed during the winter months, following light therapy, and while in remission during the summer months.

There were no significant differences in G protein levels between winter and summer samples of the controls. Normalizing the winter samples as our comparison reference, the results show similar Gα, Gα, and Gβ immunoreactivities for the control subjects during winter and summer.
summer: for G_α, (100.0% ± 20.4%) vs (99.3% ± 18.3%), 2-tailed Wilcoxon statistic (W) = 4, n = 19, P > .05; for G_β, (100.0% ± 29.5%) vs (97.2% ± 28.4%), W = 30, n = 17, not significant; for G_β: (100.0% ± 24.1%) vs (102% ± 22.2%), W = −12, n = 15, not significant, Wilcoxon signed rank test).

Figure 2 shows that G_α and G_α immunoreactive levels in MNLs of patients with winter depression (71.9% ± 22.4% and 79.5% ± 23.2%, respectively), were significantly reduced in comparison with the respective levels in healthy subjects (100.0% ± 15.8% and 100% ± 7.2%), using both intrablot matched comparisons (for G_α: W = 195, n = 21, P < .01; for G_β: W = 221, n = 21, P < .01, Wilcoxon signed rank test) and interblot average comparisons (for G_α: the Mann-Whitney test statistic [Us] = 379, t_0 = 3.99, P < .01; for G_β: Us = 274, t_0 = 2.8, P < .01, Mann-Whitney test). In contrast, MNL G_β levels of depressed patients with SAD (100.6% ± 16.6%) were similar to levels in healthy volunteers (100% ± 9.4%), as calculated using both intrablot average comparison (Us = 170, t_0 = 0.15, not significant, Mann-Whitney test), and interblot matched comparisons (W = 37, n = 22, not significant, Wilcoxon signed rank test).

In the winter group, the increased G_α immunoreactivity was detected with a Western blot detection system (Enhanced Chemiluminescence Western Blot Detection System; Amersham, Buckinghamshire, England) followed by exposure to film (Kodak X-Omat; Kodak, Rochester, NY).

Two weeks of light therapy resulted in clinical remission in patients with SAD with decreases in typical, atypical, and total SIGH-SAD scores (Table). After 2 weeks of light therapy, the reduced G_α and G_α levels in the depressed patients with SAD were significantly elevated to normal levels (for G_α: 95.7% ± 24.2%, W = 85, n = 15, P < .02; for G_β: 103.4% ± 23.6%, W = 90, n = 16, P < .02; Wilcoxon signed rank test), while G_β levels, (100.3% ± 14.3%) remained similar to the control values obtained for depressed patients with SAD (W = 5, n = 18, not significant, Wilcoxon signed rank test) (Figure 2). The table shows that G_α and G_α protein normalization paralleled clinical remission in all treated patients as well as in the subgroups of responders and nonresponders.

Immunoblot Analysis

On the day of assay, membranes were thawed, aliquots of 10 µg taken for protein separation by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the resulting proteins transferred to nitrocellulose paper by use of an electrophoretic apparatus. Blots were washed in Tris-buffered saline containing 3% polyoxyethylene-sorbitan monolaurate (TTBS), and blocked by incubation with 5% bovine serum albumin for 1 hour in Tris-buffered saline containing 0.1% polyoxyethylene-sorbitan monolaurate. After 2 washes in TTBS, blots were incubated overnight with each of the following antibodies (Santa Cruz Biotechnology Inc, Santa Cruz, Calif) directed specifically against G_α, G_α_1, and G_α (all diluted 1:100), followed by subsequent incubation with goat antirabbit IgG labeled with horseradish peroxidase (Jackson Immunoresearch Laboratories Inc, Westgrove, Pa). Immunoreactivity was detected with a Western blot detection system (Enhanced Chemiluminescence Western Blot Detection System; Amersham, Buckinghamshire, England) followed by exposure to film (Kodak X-Omat; Kodak, Rochester, NY).

Statistical Analysis

The Wilcoxon signed rank test was used for intrablot comparisons, which are singular matched comparisons within immunoblots, with an α level of significance of .05. For interblot average comparisons, the Mann-Whitney U test was used and was corrected for multiple comparisons by the Bonferroni adjustment, with an α level of significance of .02.
During the summer, the SIGH-SAD scores show the patients with SAD to be in remission (Table), with levels of MNL G\(_{\alpha}\) (102.3% ± 19.5%), G\(_{\alpha}\) (102.9% ± 21.7%), and G\(_{b}\) (101.5% ± 18.7%) similar to levels obtained for healthy subjects (for G\(_{\alpha}\): Us = 169, \(t_{34} = 0.24\), not significant; for G\(_{b}\): Us = 218, \(t_{34} = 1.11\), not significant; for Us = 170, \(t_{34} = 0.25\), Mann-Whitney test).

Figure 1. \(\xi\) protein as an information transducer from membrane receptor to intracellular effectors, the cycle of activation and inactivation. Heterotrimeric \(\xi\) proteins are located in the inner side of the cell membrane, playing a pivotal role in signal transduction beyond the receptor. The 3 \(\xi\) subunit proteins are \(\alpha\), \(\beta\), \(\gamma\). The \(\alpha\) subunit contains the binding site for guanine nucleotides and possesses guanosine triphosphatase activity. The \(\alpha\) subunit also contains the site for nicotineamide adenine nucleotide–dependent adenosine diphosphate–riboseylation catalyzed by cholera or pertussis bacterial toxins. The heterogeneity of \(\alpha\) subunit serves to divide \(\xi\) proteins into the major classes (G\(_{s}\), G\(_{i}\), G\(_{o}\), G\(_{q}\), etc). The \(\beta\) and \(\gamma\) subunits, which have their functional roles in signal transduction, form a tightly associated complex, which contributes to the receptor recognition site on the \(\xi\) protein oligomer and facilitates the attachment of the oligomer to the inner face of the plasma membrane. When a hormone or a neurotransmitter (H) binds to its specific receptor (R), it forms an activated receptor–\(\xi\) protein (G) complex. This induces guanine nucleotide exchange on the \(\alpha\) subunit of \(\xi\) protein so that guanosine diphosphate (GDP) is displaced by guanosine triphosphate (GTP). The binding of GDP induces the dissociation of the \(\xi\) protein. The GTP-bound \(\alpha\) subunit interacts with the effector (E) molecule (ie, adenylate cyclase or phospholipases) and affects its activity in producing respective second messengers (ie, cyclic adenosine monophosphate, inositol triphosphate, diacylglycerol). The GTP-bound \(\alpha\) subunit has also intrinsic guanosine diphosphatase (GTPase) activity. The \(\alpha\) subunit is then left in an inactive form tightly bound to GDP, and the \(\xi\) protein subunits reassociate. The rate-limiting step in this cycle is the release of GDP from the \(\alpha\) subunit that is catalyzed through the activated receptor. Thus, \(\xi\) protein cycles between an inactive, GDP-liganded oligomeric form (“off” position), and an active, GTP-ligated monomeric state (“on” position).

Figure 2. The effect of light therapy on the immunoreactivity of various \(\xi\) protein subunits in the mononuclear leukocyte levels of patients with seasonal affective disorder. The relative immunoreactivities of G\(_{\alpha}\) (left panel), G\(_{\alpha}\) (middle panel), and G\(_{b}\) (right panel) determined in the mononuclear leukocytes were obtained from patients with seasonal affective disorder while depressed; 21 were examined for G\(_{\alpha}\) and G\(_{\alpha}\), and 22 for G\(_{b}\) (open circles). After 2 weeks of light therapy, 15 were evaluated for G\(_{\alpha}\), 16 for G\(_{\alpha}\), and 19 for G\(_{b}\) (closed circles) as compared with normal subjects for which 21 were assessed for G\(_{\alpha}\), 17 for G\(_{\alpha}\), and 15 for G\(_{b}\) (open squares).

A major finding of this study is the description of reduced levels of G\(_{\alpha}\) and G\(_{\alpha}\) subunit proteins in MNLs of patients with SAD, atypical-type depression. These findings are compatible with previous studies in patients with typical major depression. The \(\xi\) protein abnormalities detected in this study in depressed patients with SAD seem to be a state rather than a trait marker of SAD since (1) the same patients examined for their MNL G protein levels in the summer, while in remission, did not show statistically significant alterations when compared with healthy control subjects; and (2) light therapy resulted in normalization of the reduced G protein immunoreactivity detected in the same patients while depressed. The results of this study are consistent with our earlier reports of MNL G protein measures as a state characteristic of mood disorders: (1) inverse picture of MNL G protein measures in bipolar mood disorder with respective increases in mania and decreases in bipolar depression; and (2) normalization of MNL G protein measures in patients with mood disorders with lithium, antidepressants, and electroconvulsive therapy.

The mechanisms underlying the alterations in \(\xi\) protein levels in MNL of depressed patients with SAD and their normalization by light are still unknown. Increasing evidence indicates the existence of neural-mediated immunomodulatory mechanisms involving the hypothalamic-pituitary-adrenal axis and the sympathetic and parasympathetic innervation of primary and secondary lymphoid organs. These mechanisms may modulate MNL \(\xi\) proteins. Thus, MNL \(\xi\) protein alterations may reflect secondary influences of circulatory primary messengers, altered by the depressive state, or secondary influences of altered sympathetic and parasympathetic innervation of lymphoid organs induced by the depressive state.
We are aware that the involvement of G proteins in the pathophysiology of depression as implicated from the data presented here should be taken with considerable caution: findings obtained in peripheral blood cells cannot be directly extrapolated to the central nervous system. We have discussed this issue at length previously. As we use a mixed-cell MNL preparation for our assays, the possibility remains that the alterations observed in G protein immunoreactivity reflect, at least in part, alteration in a white cell subpopulation induced by the depressive state and/or by light therapy. While Gαs and Gαi levels were reduced in the group of depressed patients with SAD, the Gβ levels remained similar to the control group. Such differential alterations would not be expected to occur owing to alterations in a white cell subpopulation.

If changes observed in MNL G protein levels in this study do reflect alterations in brain G proteins, a possible candidate may be transducin (Gt protein), which connects rhodopsin with a retinal phosphodiesterase regulating cyclic guanosine monophosphate, sodium permeability of the rod outer segment membrane, and, consequently, the electroretinogram (ERG). It has been shown that lithium can decrease ERG amplitude and that these effects are related to inhibition of transducin, similar to the inhibition of Gt and Gi proteins reported previously. Indeed, ERG measurements have been conducted in SAD, indicating either subtle retinal changes in flash ERG or no changes in pattern ERG in depressed patients with SAD. The findings in this study of reduced MNL G protein levels in depressed patients with SAD may explain the reported subsensitivity to light in depressed patients with SAD by conjuring reduced levels of transducin (Gt). Light treatment found in this study to normalize the reduced levels of MNL G proteins in depressed patients with SAD may exert its effects centrally through possible normalization of supposed Gt protein hypofunction.

Another state marker of depressed patients with SAD is their abnormal response to the somewhat selective 5-hydroxytryptamine2C agonist meta-chlorophenylpiperazine. The reported activation and euphoria seen in depressed patients with SAD, but not in healthy controls, following administration of meta-chlorophenylpiperazine is normalized both after effective light therapy and in the summer. In this regard, the meta-chlorophenylpiperazine findings resemble those in this study.

Most 5-hydroxytryptamine receptor subtypes are G protein-coupled, including 5-hydroxytryptamine1C. It is possible that both light therapy and summer, which reverse the depressive symptoms of SAD, may also normalize G protein levels in both the brain and the periphery. Such putative normalization may be of relevance to the pathogenesis of symptoms.

Accepted for publication November 18, 1998.

This study was supported by a research grant from the Chief Scientist Office of the Israel Ministry of Health, Jerusalem (Dr Schreiber and Avissar), by the Yadgarov Family Foundation, Tel-Aviv, Israel (Dr Schreiber), and by the Intramural Program of the National Institute of Mental Health, National Institutes of Health, Bethesda, Md.

Corresponding author: Sofia Avissar, PhD, Department of Clinical Pharmacology, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel (e-mail: sofia@bgumail.bgu.ac.il).

REFERENCES

