Hippocampal Volume in Patients With Alcohol Dependence

Ingrid Agartz, MD, PhD; Reza Momenan, PhD; Robert R. Rawlings, MS; Michael J. Kerich, BS; Daniel W. Hommer, MD

Background: Smaller hippocampal volumes have been reported in the brains of alcoholic patients than in those of healthy subjects, although it is unclear if the hippocampus is disproportionally smaller than the brain as a whole. There is evidence that alcoholic women are more susceptible than alcoholic men to liver and cardiac damage from alcohol. It is not known whether the hippocampi of the female brain are more vulnerable to alcohol.

Methods: We compared the hippocampal volumes in 52 hospitalized alcoholic men and women with those of 36 healthy nonalcoholic men and women. All subjects were between 27 and 53 years of age. The hippocampal volumes were measured from sagittal T1-weighted high-resolution magnetic resonance images.

Results: The alcoholic women had less lifetime drinking and a later age at onset of heavy drinking than alcoholic men. Both alcoholic men and women had significantly smaller right hippocampi and larger cerebrospinal fluid volumes than healthy subjects of the same sex. Only among women were the left hippocampus and the non-hippocampal brain volume also significantly smaller. The proportion of hippocampal volume relative to the rest of the brain volume was the same in alcoholic patients and healthy subjects, in both men and women. The right hippocampus was larger than the left among all subjects. Women demonstrated larger hippocampal volumes relative to total brain volume than men. Psychiatric comorbidity, including posttraumatic stress disorder, did not affect hippocampal volume.

Conclusions: In chronic alcoholism, the reduction of hippocampal volume is proportional to the reduction of the brain volume. Alcohol consumption should be accounted for in studies of hippocampal damage.

Arch Gen Psychiatry. 1999;56:356-363

In patients with chronic alcoholism, brain volumes and brain weight are decreased. Postmortem investigations show reduced white matter as well as decreased neuronal density of the cortical gray matter with selective neuronal loss in the superior frontal cortex. Heavy drinking accelerates age-related myelin loss. Neuronal loss in all hippocampal ammonic fields and the gyrus dentate has been reported. Other investigators have found reductions of the hippocampal white matter only.

Animal research has demonstrated neurodegeneration in the hippocampus with alcohol exposure. With high peak doses, the damage is more substantial and may be mediated by excitotoxicity. During withdrawal, stress-induced corticosteroid elevation may act in concert with alterations in excitatory neurotransmission. The hippocampus is rich in glucocorticoid receptors and considered particularly vulnerable. Thus, the human hippocampus may be more affected than other brain structures by alcohol's neurotoxic effects. By means of in vivo magnetic resonance (MR) imaging, hippocampal volume reduction has been reported in conditions associated with increased corticosteroid levels, including Cushing syndrome, posttraumatic stress disorder (PTSD) secondary to childhood sexual abuse or combat, and depression, although in depression there have been studies with negative findings. Neuronal reduction in hippocampal fields also occurs in postanoxic amnesia, temporal lobe epilepsy, Alzheimer disease, and schizophrenia.

Hippocampal volume reductions on MR imaging have been reported in patients with chronic alcoholism but not in those with alcoholic Korsakoff syndrome. Reductions of whole-brain gray and white matter occur in alcoholism and increase with age. These are most pronounced in the frontal lobe. Recovery with abstinence appears greatest in the first weeks of sobriety. Women achieve higher peak blood alcohol levels than men with the same alcohol dose. A small number of imaging studies have investigated sex-specific vulnerability of the brain to alcohol and have suggested that alcoholic women show the same degree of
SUBJECTS AND METHODS

SUBJECTS

As shown in Table 1, 26 alcoholic men, 26 alcoholic women, 17 healthy men, and 19 healthy women participated in the study. They were recruited by means of advertisements in a local newspaper’s weekly health section as well as from area alcohol treatment programs. Age range was 27 to 53 years. They were studied at the Clinical Center of the National Institutes of Health, Bethesda, Md, from July 1992 through September 1997. All subjects were interviewed with the Structured Clinical Interview for DSM-III-R.39,40 patient edition (with psychotic screen) for Axis I (clinical syndromes). The Structured Clinical Interview for DSM-III-R Personality Disorders was used to assess Axis II disorders. All subjects were administered the Michigan Alcoholism Screening Test.41 Information on recent and long-term alcohol consumption, as well as alcohol-related behavior, was obtained from structured research questionnaires.42 Alcohol intake in the past 6 months (recent alcohol) was corrected for alcohol distribution volume (total body water).43 All subjects provided written informed consent to participate in the study.

The alcoholic patients met the DSM-III-R criteria for alcohol dependence. Patients who met the criteria for alcohol abuse but not alcohol dependence, who suffered from a somatic disease (including diseases associated with alcoholism), or who had a history of delirium tremens or psychotic disorders were excluded. In addition, patients who on neuropsychological testing had an IQ of less than 80 or demonstrated signs of dementia or Korsakoff disease were also excluded. No patients were thiamine deficient at admission. Subjects with a history of intravenous drug use at any time during their life or any substance abuse disorder, other than alcohol or tobacco abuse or dependence, in the 6 months preceding admission were excluded. The control group had no psychiatric disorder meeting DSM-III-R criteria.

On the basis of the subject’s history, physical examination results, blood chemistry, and a negative urinary drug screen, all subjects were judged to be medically healthy. Weights were collected within 1 to 3 days from the MR imaging examination. The intracranial volume (ICV) was obtained as a volumetric measure calculated from MR images. Nutritional status was assessed by measuring the levels of total protein, albumin, transferrin, and mean corpuscular volume in serum at the time of admission and MR imaging. The values were all within the normal reference range. None of the subjects had a history of head injury requiring hospitalization. Seven of the alcoholic patients had a history of withdrawal seizures. Twenty-eight of the patients were actively drinking up to their hospitalization and were detoxified at the National Institutes of Health Clinical Center. Eleven of these required diazepam to control withdrawal symptoms. The mean amount of diazepam was 30 ± 10 mg, and the dose ranged between a total of 20 to 165 mg given over no more than 3 days. The remaining patients had initially been hospitalized at another facility or had stopped drinking several days to 1 week before admission. The alcoholic patients underwent MR imaging 3 weeks after admission.

MR IMAGE ACQUISITION AND ANALYSIS

The subjects were examined with 1.5-T MR imaging (GE Medical Systems, Milwaukee, Wis) by means of a fast spoiled gradient recalled acquisition in the steady state sequence. The brain was scanned in a gapless series of high-contrast, 2-mm-thick, T1-weighted coronal images (repetition time, 25 milliseconds; inversion time, 5 milliseconds; and echo time, 16 milliseconds). The images were acquired by means of a 256×256 matrix with a 240×240-mm field of view. Each volumetric brain originally consisted of 124 coronal slices. The size of each voxel was 0.9375×0.9375×2.0 mm³. With the use of a hand-driven cursor, the intracranial tissue was deskulled on coronal sections. The ICV included the cerebrum and cerebrospinal fluid (CSF) spaces but excluded the cerebellum. The deskulled volume was automatically segmented into CSF and brain gray and white matter. The algorithm for the segmentation of intracranial tissues uses information from the histogram of pixel intensities of the intracranial image.44

With the current MR image contrast resolution, the hippocampus is practically isointense with some of the surrounding tissues and cannot be automatically segmented. Therefore, it must be manually outlined. We used sagittal

Continued on next page

brain damage as alcoholic men despite fewer years of heavy drinking.

Different imaging planes, section thickness, and arbitrary criteria to define hippocampal volume make the different MR imaging studies difficult to compare. Reported unilateral hippocampal volumes have ranged between 1.73 and 5.68 mL.38 We used high-resolution volumetric MR imaging to study chronic alcoholic men and women who had abstained for at least 3 weeks. The hypotheses of the current study were as follows: (1) hippocampal volume is smaller in chronic alcoholic patients than in nonalcoholic patients and (2) the reduction in hippocampal volume among alcoholic patients is proportionally greater than the decrease in size of the rest of the brain volume. We made no specific prediction regarding sex differences in hippocampal volume among alcoholic patients but expected alcoholic women to have a lower estimated lifetime consumption than alcoholic men. We examined the effects of psychiatric comorbidity, particularly PTSD, on hippocampal volume.

RESULTS

SUBJECT CHARACTERISTICS

The alcoholic men and women and the healthy men and women did not differ with regard to handedness (χ² = 4.719, exact P = .19). Of the 36 controls, 2 (6%) were left-handed compared with 5 (10%) of the 52 alcoholics. As shown in Table 1, body mass index (BMI) was higher and ICV larger in men than in women. The num-
that the mood disorder occurred in the presence of
2.9 ± 2.2 and 1.7 ± 1.8, respectively. The mood disor-
doses ranged from 0 to 6. Average total numbers of
diagnoses ranged between 0 and 11 (0 to 11 in men
excluding alcohol dependence. The number of Axis I
diagnoses among the alcoholics
spect to age at onset, number of years of heavy drinking,
ject information. The intraclass correlation was deter-
mined for the right (r = 0.81) and the left (r = 0.89)
hippocampal volumes.

OUTLINING THE HIPPOCAMPUS

The program developed to manually outline the hippo-
campus allows the operator to go back and forth between
sections with the contours from the previous slice pro-
tected to the current slice. The contours are drawn at the
pixel level by means of a hand-driven cursor and can be
adjusted by 1-pixel-size vertexes. Vertexes can be moved,
deleted, or added for editing. Images with higher contrast
can be juxtaposed for anatomic clarity. Each contour is cal-
culated as an individual volume (Figure 1). The vol-
umes of each contour are summed to determine the entire
hippocampal volume.

On T1-weighted sagittal MR sections, the lateral
part of the hippocampus appears sharply delineated
from the CSF of the temporal horn and the parahippo-
campal gyrus. On more medial sections, the CSF from
the most anterior part of the temporal horn separates the
hippocampus from the amygdala. On a small number of
sections, the amygdala and the hippocampus do not
appear clearly separated by the CSF of the temporal
horn. However, they can usually be separated by a fine
white-matter lamina or by following the implicit curva-
ture of the hippocampal head with previous contours
used as guidelines. In the most medial sections, the hip-
locampal head can still be distinguished, but it is not
possible to reliably determine the extension of the tail.46
The posterior portion of the hippocampal tail is continu-
ous with the indusium griseum, a thin strip of gray mat-
er overlying the surface of the corpus callosum. A con-
sensus was made with regard to the extent of the tail.
We included it only as long as the hippocampal head
could be identified. The number of sections used to
complete a hemisphere was 17.7 ± 1.8 (mean ± SD; range,
13-22) on the right side and 17.4 ± 2.0 (range, 14-22) on
the left side.

MEASUREMENT RELIABILITY

The intraclass correlation was determined by 2 operators
who independently outlined the hippocampus in 10 ran-
domly selected brains. The operators were blind to any sub-
ject information. The intraclass correlation was deter-
mained for the right (r = 0.81) and the left (r = 0.89)
hippocampal volumes.

STATISTICAL ANALYSIS

Differences among groups were tested by either analysis
of variance or Mann-Whitney U test. Two-tailed tests
were used throughout. Basically, 2 types of analyses
were performed. In the first analysis, diagnostic differ-
ences in regional brain volumes were tested in women
and men separately. We analyzed the right hippocampal
volume, the left hippocampal volume, the CSF volume,
and the nonhippocampal brain volume (NHB, the brain
volume minus right and left hippocampal volumes). To-
gether these compartments compose the ICV. Since the
ICV differed significantly between men and women
(Table 1), a within-sex analysis omits the need to correct
for individual differences in ICV. Thus, we could unam-
biguously compare the absolute hippocampal values for
alcoholic patients and healthy subjects for each sex.
In the second analysis, we investigated the propor-
tion of the hippocampal volume to the rest of the brain
volume in the alcoholic patients and the healthy sub-
jects, men and women together. This was performed by
creating ratios between the hippocampal volume and the
rest of the brain volume. The ratios were log trans-
formed to normalize the data.47 The log ratios of right
hippocampal/NHB, left hippocampal/NHB, and CSF/
NHB volumes were investigated for the comparison of
men and women. This type of analysis is necessary for a
rigorous statistical analysis of compositional data,47,48
such as the component volumes of the inside of the skull
where by definition the sum of the volumes must equal
the ICV.

Multiple regression analysis was used to determine the
influence of drinking measures and age on differences
in brain volumes. Because of the number of tests per-
formed, a conservative α level of .01 was used (ie,
rounded to .01).

VOLUME DIFFERENCES IN MEN AND WOMEN

As demonstrated in Table 3, right and left hippocam-
pal volume and NHB volume were smaller and the CSF
volume was larger in the alcoholic women than in the
nonalcoholic women. Among men, only the right hip-
locampal volume was smaller, and the CSF volume was
larger in alcoholic men than in nonalcoholic men.

LATERALITY DIFFERENCES

The right and the left hippocampal volume differences
did not differ significantly between the alcoholic and
healthy women (ie, no laterality × diagnosis interac-
tion). Therefore, the laterality main effect was tested
Alcoholic Women
Healthy Women
Healthy Men

Downloaded From: on 07/25/2018

The univariate tests investigating the effect of diagnosis on differences in the log ratios demonstrated that only the log ratio of CSF to NHB significantly differed between alcoholic patients and healthy subjects, with a larger hippocampal volume among the alcoholic patients. In this analysis, the alcoholic men and women had significantly larger left hippocampal volumes compared to healthy men and women of the same sex, but only in women were the left hippocampi and the NHB volume also significantly smaller among the alcoholic patients. In this analysis, the alcoholic men and women were not directly compared. It is noteworthy that the alcoholic women in comparison with the healthy women demonstrated significant volume differences in all 4 volumes we studied, whereas in alcoholic men only the right hippocampus and the CSF volume differed significantly from those of the healthy men. This occurred despite less lifetime drinking, fewer years of heavy drinking, and a later age at onset of heavy drinking among the alcoholic women than among the alcoholic men. However, the alcoholic women and men did report similar alcohol intake during the 6 months preceding admission.

The alcoholic women in our study had a lower-than-expected mean BMI. The average BMI of the alcoholic women who did not have PTSD values for the alcoholic women who did not have PTSD (n = 12) were 3.325 ± 0.331 and 3.195 ± 0.345 mL, respectively. The corresponding values for the alcoholic women who did not have PTSD (n = 14) were 3.325 ± 0.470 and 3.236 ± 0.404 mL.

Table 1. Differences in Descriptive Variables of Alcoholic and Healthy Subjects

<table>
<thead>
<tr>
<th>Variables</th>
<th>Alcoholic Men</th>
<th>Alcoholic Women</th>
<th>Healthy Men</th>
<th>Healthy Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD No.</td>
</tr>
<tr>
<td>Age, y</td>
<td>36.9 ± 6.2</td>
<td>26</td>
<td>37.4 ± 5.6</td>
<td>26</td>
</tr>
<tr>
<td>Education, y†</td>
<td>13.9 ± 2.5</td>
<td>26</td>
<td>15.0 ± 2.1</td>
<td>25</td>
</tr>
<tr>
<td>Height, cm‡</td>
<td>174.9 ± 6.6</td>
<td>26</td>
<td>167.9 ± 7.4</td>
<td>26</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>80.0 ± 10.9</td>
<td>26</td>
<td>62.2 ± 7.8</td>
<td>23</td>
</tr>
<tr>
<td>BMI, kg/m²‡</td>
<td>26.16 ± 3.48</td>
<td>26</td>
<td>22.32 ± 2.43</td>
<td>23</td>
</tr>
<tr>
<td>Intracranial volume, mL‡</td>
<td>1357.3 ± 122.0</td>
<td>26</td>
<td>1189.6 ± 81.8</td>
<td>23</td>
</tr>
<tr>
<td>Recent drinking, kg</td>
<td>2.223 ± 1.457</td>
<td>26</td>
<td>2.060 ± 1.606</td>
<td>25</td>
</tr>
<tr>
<td>Recent drinking/TBW, kg/L</td>
<td>0.51 ± 0.33</td>
<td>26</td>
<td>0.68 ± 0.57</td>
<td>22</td>
</tr>
<tr>
<td>Years of heavy drinking‖</td>
<td>13.6 ± 7.6</td>
<td>26</td>
<td>6.9 ± 5.1</td>
<td>25</td>
</tr>
<tr>
<td>Age at onset, y</td>
<td>23.3 ± 6.0</td>
<td>26</td>
<td>26.2 ± 12.2</td>
<td>25</td>
</tr>
<tr>
<td>Lifetime drinking, kg</td>
<td>624.7 ± 555.2</td>
<td>26</td>
<td>360.3 ± 476.9</td>
<td>25</td>
</tr>
<tr>
<td>MAST score</td>
<td>59.9 ± 72.9</td>
<td>25</td>
<td>41.7 ± 16.6</td>
<td>25</td>
</tr>
</tbody>
</table>

*†Diagnosis effect at P < .01, analysis of variance.
‡Sex effect at P < .01, analysis of variance.
§Ellipses indicate not applicable.

Among drinking variables in alcoholic subjects, lifetime drinking and heavy drinking differed at P < .01, analysis of variance. The right hippocampus was significantly larger than the left (Figure 2, left). Thus, the right hippocampal volume was larger than the left in both men and women irrespective of the diagnosis of alcoholism.

DIFFERENCES IN LOG RATIOS

The univariate tests investigating the effect of diagnosis on differences in the log ratios demonstrated that only the log ratio of CSF to NHB significantly differed between alcoholic patients and healthy subjects, with a larger proportion of CSF relative to brain volume in the alcoholic men and women (Table 4). The univariate test investigating the effect of sex on differences in the log ratios demonstrated a significantly larger left hippocampus to NHB volume log ratio in women than in men (Table 4). There were no significant interaction effects between diagnosis and sex.

DRINKING SEVERITY, BMI, AND PSYCHIATRIC COMORBIDITY

When we corrected for differences in age among the alcoholics, we did not find statistically significant evidence that recent drinking or lifetime drinking contributed to differences in hippocampal volumes. The BMI was not a significant covariate in the statistical analyses. Psychiatric comorbidity did not predict outcome of the volumetric measures, nor did the number of diagnoses. There were no differences in regional brain volumes or drinking measures between the alcoholic women with and without PTSD. Mean values and SDs of the right and left hippocampal volumes in the alcoholic women who also had PTSD (n = 12) were 3.325 ± 0.331 and 3.195 ± 0.345 mL, respectively. The corresponding values for the alcoholic women who did not have PTSD (n = 14) were 3.325 ± 0.470 and 3.236 ± 0.404 mL.

COMMENT

The use of sagittal sections allowed us to distinguish between the hippocampus and the amygdala and measure the entire hippocampus without the exclusion of the anterior portion. The mean values and SDs for the hippocampal volumes were in agreement with previous studies.

When we studied the sexes separately, we found that both alcoholic men and women had significantly smaller right hippocampi than healthy subjects of the same sex, but only in women were the left hippocampus and the NHB volume also significantly smaller among the alcoholic patients. In this analysis, the alcoholic men and women were not directly compared. It is noteworthy that the alcoholic women in comparison with the healthy women demonstrated significant volume differences in all 4 volumes we studied, whereas in alcoholic men only the right hippocampus and the CSF volume differed significantly from those of the healthy men. This occurred despite less lifetime drinking, fewer years of heavy drinking, and a later age at onset of heavy drinking among the alcoholic women than among the alcoholic men. However, the alcoholic women and men did report similar alcohol intake during the 6 months preceding admission.

The alcoholic women in our study had a lower-than-expected mean BMI. The average BMI of the alco-
holic women in our study was 3.2 kg/m² less than the average BMI for the women controls and 4.1 kg/m² less than the average of the age group according to the National Health and Nutrition Examination Survey III, phase 1 study. The alcoholic women weighed on average 7.6 kg less than the women controls and were 1.6 cm taller. The BMI of the alcoholic and healthy men in our sample was closer to the expected means, and average weight was the same. With a lower-than-expected BMI, malnutrition in women alcoholics could offer an explanation for the current findings. However, serum albumin, protein, mean corpuscular volume, and transferrin levels were within the normal reference range. Also, in the statistical analyses, differences in BMI were not significantly related to differences in hippocampal volumes or to the proportional relationships between brain structures. In adult drinkers, there is a substantial inverse relationship between body mass and alcohol intake in women but not in men. We also cannot exclude that there are sex differences in the self-report on drinking habits. For instance, from obesity studies, it is known that women tend to underestimate weight and men tend to overestimate height.

The reason for women’s apparent greater sensitivity to alcohol is uncertain. Identical doses of alcohol per kilogram of body weight produce significantly higher blood alcohol concentrations in women than in men. Proportional to body mass, women have a smaller alcohol distribution volume (body water), which may also vary with the menstrual cycle. Peak blood alcohol levels might have been higher in the alcoholic women during the 6 months preceding admission, and this may have affected hippocampal and brain volumes. Previous studies have shown that women who consume less than half the amount of alcohol per day that men do are at comparable risk for the development of hepatic complications of alcoholism. A similar relationship may hold for alcohol-induced brain damage. This would be consistent with computed tomographic studies that found similar increases in intracranial CSF spaces in alcoholic women and men despite a shorter duration of excessive drinking and smaller average amount of daily alcohol consumption by the alcoholic women. Greater structural changes in the brains of alcoholic women than of alcoholic men have not been reported except in a study of the corpus callosum. Although, in the first analysis, we did not provide a direct measure of the differences between alcoholic men and women with regard to hippocampal size, our results underline the importance of sex differences in the biological effects of alcoholism.

The proportional relationship between regional brain volumes can only be investigated in terms of con-
The log ratio analysis used for this purpose demonstrated that the proportion between the hippocampal volume and the rest of the brain volume did not differ between the alcoholic patients and the healthy subjects. This does not exclude the possibility that certain structures within the hippocampus are more adversely affected by different drinking practices and that others are more spared. Animal studies have shown that a pattern of alcohol administration resembling binge drinking with intermittently high peak blood alcohol levels may cause specific damage of selective parts of the hippocampus, but this remains to be determined in human populations.

The log ratio of the left hippocampus to the rest of the brain was higher in women than in men, reflecting proportionally larger left hippocampi in women. However, women did not have significantly larger right hippocampal volumes relative to the rest of the brain volume than men. Larger right and left hippocampal volumes in women when corrected for intracranial volume have been reported but may only be present in younger subjects (aged 20-35 years). The size of brain structures in men and women change differently during the life span, which may be caused by the influence of gonadal hormones. In our sample, the alcoholic patients demonstrated greater CSF volumes relative to the rest of the brain

Table 2. Psychiatric Comorbidity in Alcoholic Subjects Defined by DSM-III-R

<table>
<thead>
<tr>
<th>Axis I†</th>
<th>All (N = 52)</th>
<th>Men (n = 26)</th>
<th>Women (n = 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mood disorders</td>
<td>19 (1); 13 (2); 3 (3)</td>
<td>10 (1); 4 (2); 1 (3)</td>
<td>9 (1); 9 (2); 2 (3)</td>
</tr>
<tr>
<td>Substance dependence or abuse</td>
<td>16 (1); 6 (2); 3 (3); 1 (4)</td>
<td>9 (1); 4 (2); 2 (3); 1 (4)</td>
<td>7 (1); 2 (2); 1 (3)</td>
</tr>
<tr>
<td>Anxiety disorders</td>
<td>12 (1); 4 (2); 1 (3); 1 (4)</td>
<td>5 (1); 2 (2); 1 (3); 1 (4)</td>
<td>7 (1); 2 (2)</td>
</tr>
<tr>
<td>Posttraumatic stress disorder</td>
<td>16</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Other Axis I diagnoses</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>49</td>
<td>54</td>
</tr>
</tbody>
</table>

Axis II‡

Personality disorder not otherwise specified	20	12	8
Avoidant	16	7	9
No Axis II diagnosis (V71.09)	15	7	8
Borderline	15	5	10
Obsessive-compulsive	10	4	6
Narcissistic	7	3	4
Passive-aggressive	7	4	3
Antisocial	6	6	0
Schizoid and/or schizotypal	6	4	2
Dependent	4	2	2
Total	106	54	52

* The number of alcoholic subjects who received one or several diagnoses are presented in order of frequency. The number of diagnoses within the category that a certain number of subjects received are given within parentheses.
† Axis I diagnoses were combined according to DSM-III-R categories except organic mood disorder, which was categorized as a mood disorder, and posttraumatic stress disorder, which was presented separately from the anxiety disorders.
‡ Of Axis II disorders, schizoid and schizotypal personality disorder were combined.

Table 3. Right Hippocampal (RH), Left Hippocampal (LH), Nonhippocampal Brain (NHB), and Cerebrospinal Fluid (CSF) Volumes in Alcoholic and Healthy Subjects

<table>
<thead>
<tr>
<th>Volume, mL</th>
<th>Alcoholic Subjects, Mean ± SD (Range)</th>
<th>Healthy Subjects, Mean ± SD (Range)</th>
<th>Effect of Diagnosis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>3.325 ± 0.403 (2.537-4.090)</td>
<td>3.729 ± 0.471 (2.821-4.450)</td>
<td>9.52 .004</td>
</tr>
<tr>
<td>LH</td>
<td>3.217 ± 0.371 (2.489-4.035)</td>
<td>3.529 ± 0.405 (2.668-4.135)</td>
<td>7.20 .01</td>
</tr>
<tr>
<td>NHB</td>
<td>915.7 ± 78.4 (773.9-1090.8)</td>
<td>1010.9 ± 90.9 (842.2-1218.3)</td>
<td>14.13 <.001</td>
</tr>
<tr>
<td>CSF</td>
<td>267.3 ± 44.4 (177.3-342.7)</td>
<td>230.3 ± 47.9 (155.2-298.3)</td>
<td>7.13 .01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume, mL</th>
<th>Alcoholic Subjects, Mean ± SD (Range)</th>
<th>Healthy Subjects, Mean ± SD (Range)</th>
<th>Effect of Diagnosis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH</td>
<td>3.596 ± 0.409 (2.983-4.600)</td>
<td>3.938 ± 0.362 (3.304-4.391)</td>
<td>7.82 .008</td>
</tr>
<tr>
<td>LH</td>
<td>3.454 ± 0.385 (2.587-4.279)</td>
<td>3.613 ± 0.462 (2.785-4.549)</td>
<td>1.49 .23</td>
</tr>
<tr>
<td>NHB</td>
<td>1060.6 ± 104.1 (851.3-1267.7)</td>
<td>1105.5 ± 87.5 (958.0-1260.8)</td>
<td>2.16 .15</td>
</tr>
<tr>
<td>CSF</td>
<td>289.6 ± 48.7 (191.8-379.4)</td>
<td>255.0 ± 28.5 (217.8-309.7)</td>
<td>6.98 .01</td>
</tr>
</tbody>
</table>

* Analysis of variance, univariate tests.
† N = 26 alcoholic men and 19 healthy men (df = 1,43).
‡ N = 26 alcoholic men and 17 healthy men (df = 1,41).
This reflects the overall reduction in brain volume found in chronic heavy drinkers. The hippocampal volumes in the alcoholic women who had PTSD did not differ from those of the alcoholic women who did not have PTSD. It has been reported that in women and men, the occurrence of PTSD contributed more to the decrease in hippocampal volume than alcohol abuse.\(^{16-19}\) The current study shows that among alcohol-dependent women the effects of alcohol on brain volumes are greater than any effect of PTSD. Although it is possible that the patients in our study suffered from more severe alcoholism than subjects in the PTSD studies, our findings demonstrate the need to carefully control for alcohol consumption in human studies of the hippocampus.

Because of the current limitations in MR image resolution, we were not able to assess the relative damage of the different anatomical parts of the hippocampus. Self-reported drinking measures should be considered to be only estimates. Their ultimate validity cannot be known. Although it is likely that the recovery of the brain tissue with abstinence is greatest in the first few weeks of sobriety, it is possible that if we had studied alcoholics who had successfully abstained from alcohol for several months, the difference in brain volumes between alcoholic patients and healthy subjects may have been smaller.

Accepted for publication January 11, 1999.

This study was supported by the Swedish Medical Research Council, the Swedish Society of Medicine, and Fredrik and Ingrid Thuring Foundation, Stockholm, Sweden.

We thank Thomas Hyde, MD, PhD, for helpful guidance in the identification of hippocampal boundaries and Brenda Croce for helping with the segmentation procedure.

Reprints: Ingrid Agartz, MD, PhD, Department of Clinical Neuroscience, MR Research Center, Karolinska Hospital, Stockholm, SE-171 76 Sweden (e-mail: Ingrid.Agartz@knv.ki.se).

Table 4. Effect of Sex and Diagnosis on Differences in Log Ratios of Right Hippocampal (RH), Left Hippocampal (LH), and Cerebrospinal Fluid (CSF) Volumes to Nonhippocampal Brain (NHB) Volumes in Alcoholic and Healthy Subjects\(^*\)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD Log Ratio</th>
<th>Effect of Sex</th>
<th>Effect of Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RH/NHB (n = 26)</td>
<td>Healthy Women (n = 19)</td>
<td>Alcoholic Men (n = 26)</td>
</tr>
<tr>
<td>RH/NHB</td>
<td>-5.621 ± 0.115</td>
<td>-5.607 ± 0.0793</td>
<td>-5.688 ± 0.084</td>
</tr>
<tr>
<td>LH/NHB</td>
<td>-5.654 ± 0.117</td>
<td>-5.660 ± 0.109</td>
<td>-5.729 ± 0.102</td>
</tr>
<tr>
<td>CSF/NHB</td>
<td>-1.242 ± 0.214</td>
<td>-1.497 ± 0.208</td>
<td>-1.307 ± 0.188</td>
</tr>
</tbody>
</table>

\(^*\) Analyzed by analysis of variance, univariate tests; no significant interaction effects.

REFERENCES

14. Sapolsky RM, Krey LC, McEven BS. Prolonged glucocorticoid exposure

11. Eskay RL, Chautard T, Torda T, Daoud RI, Hamelink C. Alcohol, corticosteroids,

15. Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation

22. Gilmore RL, Childress MD, Leonard C, Quisling R, Roper S, Eisenschenk S,

27. Sullivan EV, Marsh L, Mathalon DH. Lim KO, Pfefferbaum A. Anterior hippocam-

53. Clevidence BA, Taylor PR, Campbell WS, Judd JT. Lean and heavy women may

57. Murphy DGM, DeCarli C, McIntosh AR, Daly E, Mentis MJ, Pietrini P, Szcze-

31. Pfefferbaum A, Lim KO, Zipursky RB, Mathalon DH, Rosenbloom MJ, Lane B,

10. Lundqvist C, Ailing C, Knoth R, Volk B. Intermittent ethanol exposure of adult

34. Thomasson HR. Gender differences in alcohol metabolism. Recent Dev Alcohol.

19. Walker DW, King MA, Hunter BE. Alterations in the structure of the hippocam-

21. Eckhardt MJ, Parker ES, Noble EP, Feldman DJ, Gottschalk LA. Relationship be-

145-155.

32. Pefferbaum A, Sullivan EV, Mathalon DH, Shear PK, Rosenbloom MJ, Lim KO.

38. Honeycutt NA, Smith CD. Hippocampal volume measurements using magnetic

33. Goldstein FB, Huttunen JS, Alari M, Meneghel I. The detection of minor head

13. Squire LR, Amaral DG, Press GA. Magnetic resonance imaging of the hippocam-

5:308-312.

31. Pfefferbaum A, Lim KO, Zipursky RB, Mathalon DH, Rosenbloom MJ, Lane B,

41. Selzer ML. The Michigan alcoholism screening test: the quest for a new diag-

36. Mitchell LD, Kettner AE, O'Brien JB, Thomas G, Frank M. Baseline data for al-

37. Comerford MM, Butters N, DiTraglia G, Schafer K, Smith T, Irwin M, Grant I,

40. Goldstein FB, Huttunen JS, Alari M, Meneghel I. The detection of minor head

27. Sullivan EV, Marsh L, Mathalon DH, Lim KO. Pfefferbaum A. Anterior hippocam-

47. DiCarli MF, Wernick N, Lenabyrin R, Hoffman HJ, Haacke EM, Atlas SW. Quan-

8. Bengochea O, Gonzalo LM. Effect of chronic alcoholism on the human hippo-

7. Wiggins RC, Gorman A, Rolsten C, Samorajrki T, Ballanger WE, Freund G. Effe-

27. Sullivan EV, Marsh L, Mathalon DH, Lim KO. Pfefferbaum A. Anterior hippocam-

6. Harding AJ, Wong A, Svoboda M, Krij JJ, Halliday GM. Chronic alcohol con-

20. Bergogne-Bigot O, Gonzalez LM. Effect of chronic alcoholism on the human hippo-

9. Bengochea O, Gonzalez LM. Effect of chronic alcoholism on the human hippocam-

50. Williamson DF, Forman MR, Binkin NJ, Gentry EM, Remington PL, Trowbridge

17. Brenner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C, Capelli S,

13. Bengochea O, Gonzalo LM. Effect of chronic alcoholism on the human hippocam-

26. Anderson J,随后其他人的姓名或信息。

52. Duvenoix HL. The Human Hippocampus: An Atlas of Applied Anatomy. Mu-

11. Eskay RL, Chautard T, Torda T, Daoud RI, Hamelink C. Alcohol, corticosteroids,

5:308-312.

15. Starkman MN, Gebarski SS, Berent S, Schteingart DE. Hippocampal formation

37. Comerford MM, Butters N, DiTraglia G, Schafer K, Smith T, Irwin M, Grant I,

35. Goldstein FB, Huttunen JS, Alari M, Meneghel I. The detection of minor head

32. Pefferbaum A, Sullivan EV, Mathalon DH, Shear PK, Rosenbloom MJ, Lim KO.

42. Eckhardt MJ, Parker ES, Noble EP, Feldman DJ, Gottschalk LA. Relationship be-

33. Goldstein FB, Huttunen JS, Alari M, Meneghel I. The detection of minor head

13. Squire LR, Amaral DG, Press GA. Magnetic resonance imaging of the hippocam-

26. Anderson J,随后其他人的姓名或信息。