Functional Imaging of Memory Retrieval in Deficit vs Nondeficit Schizophrenia

Stephan Heckers, MD; Donald Goff, MD; Daniel L. Schacter, PhD; Cary R. Savage, PhD; Alan J. Fischman, MD, PhD; Nathaniel M. Alpert, PhD; Scott L. Rauch, MD

Background: Neuroimaging studies have provided evidence of abnormal frontal and temporal lobe function in schizophrenia. Frontal cortex abnormalities have been associated with negative symptoms and temporal lobe abnormalities with positive symptoms. The deficit and nondeficit forms of schizophrenia were predicted to differ in prefrontal cortical activity, but not in medial temporal lobe activity.

Methods: Regional cerebral blood flow was studied using oxygen 15 positron emission tomography during 3 different memory retrieval conditions in 8 control subjects, 8 patients with the deficit syndrome, and 8 patients without the deficit syndrome. Behavioral and positron emission tomography data were analyzed using a mixed-effects model to test for population differences.

Results: In all memory conditions, frontal cortex activity was higher in patients without the deficit syndrome than in patients with the deficit syndrome. During the attempt to retrieve poorly encoded words, patients without the deficit syndrome recruited the left frontal cortex to a significantly greater degree than did patients with the deficit syndrome. The 2 schizophrenia subtypes did not differ in the activity or recruitment of the hippocampus during memory retrieval.

Conclusion: Frontal cortex function during memory retrieval is differentially impaired in deficit and nondeficit schizophrenia, whereas hippocampal recruitment deficits are not significantly different between the 2 schizophrenia groups.

Arch Gen Psychiatry. 1999;56:1117-1123

From the Psychotic Disorders Unit (Drs Heckers and Goff) and the Psychiatric Neuroimaging Research Group (Drs Heckers, Savage, and Rauch), Department of Psychiatry, and the Positron Emission Tomography Laboratory, Division of Nuclear Medicine, Department of Radiology (Drs Fischman, Alpert, and Rauch), Massachusetts General Hospital, and the Department of Psychology, Harvard University (Dr Schacter), Boston, Mass.
SUBJECTS AND METHODS

SUBJECTS

We studied 16 male subjects with schizophrenia and 8 male control subjects. Data from 13 patients with schizophrenia and the 8 control subjects were previously analyzed to test for differences between patients with schizophrenia and normal controls.

The patients with schizophrenia were recruited from an outpatient mental health clinic in Boston, Mass, and diagnosed according to DSM-IV criteria by an experienced clinician (D.G.). Control subjects were recruited by advertisement. All subjects provided written informed consent. Subjects were excluded if English was a second language or if they had a history of neurological or medical illness, current substance abuse, or lifetime substance dependence. The study was approved by the Human Subjects Committee of the Massachusetts General Hospital and the Central Office Research Review Committee of the Commonwealth of Massachusetts Department of Mental Health.

Eight of the 16 patients with schizophrenia were classified as having deficit syndrome schizophrenia and 8 were classified as having nondeficit syndrome schizophrenia using the Schedule for the Deficit Syndrome. The patients were assessed by a clinician trained in the administration of the schedule: the total score for negative symptoms ranged from 10 to 15 (minimum, 0; maximum, 24), and the Global Severity Rating scores were 2 (n = 1) or 3 (n = 7).

All subjects were right-handed and the 3 groups were similar in age (controls, 40.0 ± 6.3 years; patients with nondeficit syndrome, 42.6 ± 5.7 years; and patients with deficit syndrome, 40.0 ± 5.0 years). No control subject had a history of neurologic or medical illness, current substance abuse, or lifetime substance dependence. The patients with deficit syndrome vs controls, P = .09; controls vs patients with deficit syndrome, P = .04). The increment in recall accuracy was significantly different between the 3 groups (diagnosis × condition interaction, F2,20 = 8.45, P = .006). This was caused by different recall accuracy for the control group compared with both schizophrenia groups during low recall (patients with nondeficit syndrome vs controls, P = .01; patients with deficit syndrome vs controls, P = .04) and during high recall (controls vs patients with nondeficit syndrome, P = .09; controls vs patients with deficit syndrome, P = .02).

RESULTS

RECALL TASK

The 2 schizophrenia groups did not differ in recall accuracy scores. Recall accuracy was significantly greater during high recall than during low recall in all 3 groups (controls, 0.76 [ie, 76% correctly recalled target words] and 0.28, P<.001; patients with nondeficit syndrome, 0.64 and 0.35, P = .007; patients with deficit syndrome, 0.62 and 0.34, P = .001) (main effect of condition, F1,20 = 255.5, P<.001). The increment in recall accuracy was significantly different between the 3 groups (diagnosis × condition interaction, F2,20 = 8.45, P = .006). This was caused by different recall accuracy for the control group compared with both schizophrenia groups during low recall (patients with nondeficit syndrome vs controls, P = .01; patients with deficit syndrome vs controls, P = .04) and during high recall (controls vs patients with nondeficit syndrome, P = .09; controls vs patients with deficit syndrome, P = .02).

PET DATA

First, mean rCBF values were analyzed for each condition (baseline, low recall, and high recall) separately and
presented once and 20 words presented 4 times. The subjects were instructed to count T junctions (ie, perpendicular lines that cross) in each letter of the target words presented once (perceptual encoding strategy) and to count meanings of the target words presented 4 times (semantic encoding strategy). We gave instructions before each study session to count either T junctions or the number of meanings of the word presented on the screen. All subjects successfully completed an off-line practice trial to ensure that they were able to follow the instructions. The accuracy of counting the T junctions during the study session was not significantly different between the 3 groups (F[2,20] = 1.6; P = .22). During scanning, the subjects were asked to complete 3-letter word stems of words presented either once (low-recall condition) or 4 times (high-recall condition). The experiment consisted of 2 runs of each condition. The 2 baseline conditions bracketed the 2 pairs of low-recall/high-recall sessions, which were counterbalanced for order across subjects.

**PET SCANNING**

The PET facilities and procedures were identical to those previously described.28,38 Positron emission tomography data were acquired with a General Electric Scanditronix PC4096 SPECT whole-body tomographic scanner (General Electric, Milwaukee, Wis). The slice geometry consists of contiguous slices with a center-to-center distance of 6.5 mm (axial field, 97.5 mm) and axial resolution of 6.0 mm full-width half maximum. The axial field of view of the PET camera in a single-bed position precluded total brain coverage. We determined head positioning to ensure maximal coverage of prefrontal areas and complete coverage of the hippocampus. Positron emission tomography images were reconstructed with a conventional convolution-backprojection algorithm, corrected for photon absorption, scatter, and dead-time effects. Subjects underwent six 1-minute scans and inhaled oxygen 15 carbon dioxide beginning 30 seconds after the initiation of the task. Subjects performed tasks while viewing a computer screen and responded verbally. Each scan was followed by a 10-minute washout period.

**DATA ANALYSIS**

We analyzed the effects of group and condition on recall accuracy with a 2-way mixed factor analysis of variance (subject as random factor) with a grouping factor and with condition as a within-subjects variable. Where indicated by significant effects, we performed post hoc 2-tailed t tests.

Realignment of images and transformation into the standard stereotactic space of Talairach were performed as described previously.39 Images were smoothed with a 2-dimensional gaussian filter with a width of 15-mm full-width at half maximum. Statistical analyses were performed with Statistical Parametric Mapping (SPM) 96 (Wellcome Department of Cognitive Neurology, London, England). Mixed models in SPM 96 require that data be collapsed so that each condition is represented as a single file. That was accomplished with the proportional scaling option in the random-effects kit. The data were then modeled with explanatory variables for group and condition. Main effects and interactions were assessed using t statistics subsequently transformed into z scores. Considering that a mixed-effects model is appropriate to study population differences and that we had strong localizing hypotheses, we used a threshold for parametric maps of uncorrected P<.001 (ie, z>3.09). For completeness, and to obviate bias, all activations corresponding to z>3.09 are shown. However, this threshold is only appropriate for those territories about which unidirectional a priori hypotheses were posited. Therefore, other loci are shown in italics to reflect their post hoc status. Since our Talairach transformation algorithm is compatible with SPM 95, we used SPM 95 for the creation of the glass brain projections.

The findings of our original study29 (ie, a lack of hippocampal recruitment but preserved recruitment of prefrontal areas during different modes of memory retrieval in patients with schizophrenia compared with control subjects) were extended to the larger patient sample of this study. Herein, we focus on the comparison between patients with schizophrenia with and without the deficit syndrome. We refer to the control sample only as a reference to illustrate the differences between the 2 schizophrenia subtypes and the normal pattern of memory retrieval.

**Main Effect of Group**

Consistent with our a priori hypothesis, frontal cortex rCBF values (means averaged across all 3 conditions) differed between the 2 schizophrenia subtypes

| Table 1 | Figure 1 | Comparable differences were found in the parietal and temporal cortex. When compared with controls, frontal cortex rCBF was markedly reduced in patients with deficit syndrome and much less so in patients with nondis deficit syndrome (Figure 1). The most significant difference between patients with deficit and nondis deficit syndrome was found in the right prefrontal cortex (Brodmann area 44/9), where the rCBF values for the patients with nondis deficit syndrome were mainly in the normal range, whereas all patients with deficit syndrome showed lower rCBF values (Figure 2). The same pattern of widespread cortical differences between patients with deficit and nondis deficit syndromes was found when each condition (baseline, low recall, and high recall) was tested separately for group effects. Compared with the patients with nondis deficit syndrome, the patients with deficit syndrome did not show higher levels of rCBF in any cortical or subcortical region. |
In all 3 groups combined, low-success retrieval was associated with the recruitment of the right (areas 11 and 47) and left (area 9) prefrontal cortex as well as the right thalamus and right parietal cortex (area 40) (Table 1). However, during high-success retrieval, the normal pattern of medial temporal lobe recruitment was not found (Table 1).

**Main Effect of Retrieval Condition**

For the contrast of low recall minus baseline, patients with nondeficit syndrome exhibited significantly greater recruitment of left prefrontal area 47 compared with patients with deficit syndrome (Table 2) (Figure 3).
There were no areas of significantly greater recruitment in the patients with deficit syndrome.

For the contrast of high recall minus low recall, there were no significant differences in the frontal or medial temporal lobes between the 2 schizophrenia groups (Table 2). Compared with the control group, both schizophrenia samples failed to recruit the hippocampus ($z = 3.29$ for patients with nondeficit syndrome; $z = 2.99$ for patients with deficit syndrome) (Figure 4).

**COMMENT**

Our study provides evidence that the frontal cortex is differentially impaired in deficit and nondeficit schizophrenia; frontal cortex activity during memory retrieval and left frontal cortex recruitment during retrieval attempt were significantly greater in patients with nondeficit syndrome. However, the medial temporal lobe is similarly impaired in deficit and nondeficit schizophrenia; both schizophrenia groups did not differ in medial temporal lobe activity and failed to exhibit the normal pattern of hippocampal recruitment during memory retrieval.

Recent functional neuroimaging studies have demonstrated that the prefrontal cortex and hippocampus are associated with distinct components of memory retrieval. The right frontal cortex is consistently activated during intentional declarative or episodic retrieval of words, faces, scenes, or objects. The degree of right frontal activation during intentional retrieval may reflect the degree of strategic monitoring of memory retrieval. Hippocampal recruitment is associated with encoding and subsequent successful retrieval of memory. The pattern of right prefrontal cortex and hippocampal activation in our control group is consistent with these previous studies of memory retrieval.

Our results add new information to the existing literature regarding frontal and temporal lobe function in schizophrenia. Schizophrenia has long been associated with frontal lobe pathologic features. More recently, the theory of hypofrontality in schizophrenia has been advanced, based mainly on findings of structural and functional neuroimaging studies. However, the concept of hypofrontality has not remained unchallenged. We found hypofrontality when comparing mean rCBF values across memory retrieval conditions; it was most pronounced in the patients with deficit syndrome. However, rCBF...
changes in prefrontal areas during memory retrieval were more variable. Furthermore, although the 2 schizophrenia groups differed in frontal cortex activity during memory retrieval, they did not differ in recall accuracy scores. This raises 2 questions: How does prefrontal cortex activity relate to task performance?35 and Does a lower rCBF starting point provide greater capacity for rCBF increases?15,56 To our knowledge, these issues have not yet been studied in schizophrenia.

Previous studies have reported differential impairment of cognitive function,37-50 brain structure,50 and brain function51 in deficit and nondeficit schizophrenia. Two previous studies of cerebral glucose metabolism at rest have reported differential involvement of frontal and temporal areas in deficit vs nondeficit schizophrenia. Tamminga et al15 reported cortical hypometabolism in patients with deficit syndrome only and hippocampal hypometabolism in patients with deficit syndrome and those with nondeficit syndrome. Gur et al62 reported no differences in temporal lobe metabolism between deficit and nondeficit groups, but found increased left temporal metabolism in patients with negative symptoms as well as those with Schneiderian delusions and hallucinations. Differences in imaging methods (rest vs activation, metabolism vs blood flow, region-of-interest analysis vs SPM) make it difficult to compare our results with those in these 2 previous studies. However, the prominent involvement of the medial temporal lobe in both deficit and nondeficit schizophrenia and the decrease of frontal activity primarily in patients with negative symptoms is a consistent theme in all 3 studies.

Several authors have proposed that temporal lobe dysfunction is associated with delusions and hallucinations in schizophrenia63,66-67 and in cases of organic psychosis.66 Furthermore, abnormal frontal-temporal connections are proposed to give rise to schizophrenia.68-73 Our study of memory retrieval provides evidence for differential dysfunction of the frontal-temporal neural network in deficit patients with schizophrenia versus those without the deficit syndrome.

We have to consider treatment with neuroleptic medication and small sample size as 2 limitations of our study. All patients with schizophrenia were stable outpatients, treated with typical neuroleptics; some were treated with anticholinergic drugs. This could have affected memory performance and rCBF. We decided to study stable patients given neuroleptic medication since drug discontinuation could have worsened hippocampal function and memory performance.74 Furthermore, there is no evidence that long-term exposure to typical neuroleptics changes blood flow patterns in schizophrenia in the temporal lobe or in the prefrontal cortex during cognitive activation.75-76 The findings from the direct comparison of patients with deficit syndrome and those with nondeficit syndrome are not confounded by age or duration of illness and are unlikely to be confounded by antipsychotic medication (various typical neuroleptics, similar chlorpromazine-equivalent doses). Although we studied small samples, we used a mixed-effects model in our analysis of the behavioral and PET data. This allows us to make inferences not only about the study samples, but also about the populations from which the samples were drawn.77-79

In summary, we found evidence for frontal and temporal lobe dysfunction in schizophrenia. Deficit and nondeficit schizophrenia differ in the degree of frontal lobe dysfunction during memory retrieval but are similarly impaired in hippocampal recruitment.

Accepted for publication August 20, 1999
This study was supported by a Dupont-Warren Fellowship from Harvard Medical School, Boston, Mass (Dr Heckers); by Staglin Music Festival Investigator Award (Dr Heckers) and a Young Investigator Award (Dr Rauch) from the National Alliance for Research on Schizophrenia and Depression, Great Neck, NY; and by grants K20MH01215 (Dr Rauch) and R01MH57915 (Dr Schacter), from the National Institute of Mental Health, Rockville, Md.

We thank Dmitry Berdichevsky, MS, Zabbar Levin, MS, Avis Loring, RT, Sandra Barrow, BS, Steve Weise, BS, Ed Amico, MEd, and Dana Ruther, MA, for technical assistance.

Corresponding author: Stephen Heckers, MD, Department of Psychiatry, Massachusetts General Hospital-East, CNY-9132, Bldg 149, 13th Street, Charlestown, MA 02129 (e-mail: heckers@psych.mgh.harvard.edu).

REFERENCES


19. Volkow ND, Wolf AP, Brodie JD, Cancro R, Overall JE, Rhoades H, Van Gelder P. Brain interactions in chronic schizophrenics under resting and activation condi-

20. Wiesel FA, Wig G, Sigren D, Blomqvist G, Geritz T, Stone-Elander S. Regional brain glucose metabolism in drug free schizophrenic patients and clinical cor-

21. Wilkin A, Sanfilippo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J. Negative symp-
toms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry. 1992;49:
95-98.


42. Ungerleider LG. Functional brain imaging studies of cortical mechanisms for


47. Buckner RL, Koutstaal W, Schacter DL, Dale AM, Rotte RM, Rosen BR. Functional-


49. Rugg MD, Fletcher PC, Allan K, Frith CD, Frackowiak RSJ, Darby D. Neural cor-

50. Squire LR, Ojemann JG, Miezin FM, Petersen SE, Videno TA, Raichel ME. Achieve-

51. Schacter DL, Wagner AD. Medial temporal lobe activations in fMRI and PET stud-


54. Gur RC, Gur RE. Hypofrontality in schizophrenia: RIP. Lancet. 1995;345:1383-

55. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC. A parametric study of prefrontal cortex involvement in human working memory. Neuroim-

56. Kastrop A, Lit-G, Krueger G, Glover GH, Moseley ME. Relationship between ce-
bral blood flow changes during visual stimulation and baseline flow levels in-


58. Bucke RJ, Thaker G, Buchanan RW, Moran M, Kirkpatrick B, Carpenter WT Jr. Vi-
sual information processing impairments in deficit and nondeficit schizophre-


60. Buchanan RW, Breier A, Kirkpatrick B, Elkashef A, Munson RD, Gellad F, Car-

61. Tammenga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, Car-


63. Luchins DJ. A possible role of hippocampal dysfunction in schizophrenic symp-

64. Vanes AP. Hippocampal function and schizophrenia: experimental psycho-

65. Krickauskaus EE, Donahoe JW, Morgan MA. Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus. Biol Psychiatry. 1992;31:580-

66. Bogerts B. The temporolimbic system theory of positive schizophrenic symp-


69. Ruppin E, Reggia JA, Horn D. Pathogenesis of schizophrenic delusions and hal-


72. Nelson EY. A neural network model of cortical information processing in schizo-

73. Koutstaal W, Schacter DL, Dale AM, Rotte R, Rosen BR. Differential activa-

74. Wagner AD, Desmond JE, Glover GH, Gabrieli JD. Prefrontal cortex and recog-
nition memory: functional-MRI evidence for context-dependent retrieval pro-


76. Miller DD, Rezae K, Alliger R, Andreasen NC. The effect of antipsychotic medi-