Injectable, Sustained-Release Naltrexone for the Treatment of Opioid Dependence

A Randomized, Placebo-Controlled Trial

Sandra D. Comer, PhD; Maria A. Sullivan, MD, PhD; Elmer Yu, MD; Jami L. Rothenberg, PhD; Herbert D. Kleber, MD; Kyle Kampman, MD; Charles Dackis, MD; Charles P. O'Brien, MD

Context: Oral naltrexone can completely antagonize the effects produced by opioid agonists. However, poor compliance with naltrexone has been a major obstacle to the effective treatment of opioid dependence.

Objective: To evaluate the safety and efficacy of a sustained-release depot formulation of naltrexone in treating opioid dependence.

Design and Setting: Randomized, double-blind, placebo-controlled, 8-week trial conducted at 2 medical centers.

Participants: Sixty heroin-dependent adults.

Interventions: Participants were stratified by sex and years of heroin use (≥5 vs <5) and then were randomized to receive placebo or 192 or 384 mg of depot naltrexone. Doses were administered at the beginning of weeks 1 and 5. All participants received twice-weekly relapse prevention therapy, provided observed urine samples, and completed other assessments at each visit.

Main Outcome Measures: Retention in treatment and percentage of opioid-negative urine samples.

Results: Retention in treatment was dose related, with 39%, 60%, and 68% of patients in the placebo, 192 mg of naltrexone, and 384 mg of naltrexone groups, respectively, remaining in treatment at the end of 2 months.

Adverse events were minimal and generally mild. This formulation of naltrexone was well tolerated and produced a robust, dose-related increase in treatment retention.

Conclusion: These data provide new evidence of the feasibility, efficacy, and tolerability of long-lasting antagonist treatments for opioid dependence.
treating opioid dependence. Depot naltrexone has also been used recently in the treatment of alcohol dependence. A recent inpatient study demonstrated that an injectable depot formulation of naltrexone was safe, well tolerated, and effective in reducing the subjective, cognitive, and physiologic effects of intravenously delivered heroin for 3 to 5 weeks, depending on dose. The present study examines the safety and efficacy of depot naltrexone in a clinical setting for patients seeking treatment for opioid dependence.

METHODS

STUDY PARTICIPANTS

Participants were heroin-dependent (as defined by the DSM-IV) men and women aged 18 to 59 years who were voluntarily seeking treatment for their dependence. The target enrollment was 60 patients, stratified by sex and years of heroin use (≥5 vs < 5). Participants were randomized in blocks of 6 into 1 of 3 parallel cohorts. Patients were in good health based on medical history, physical examination findings, vital sign measurements, and 12-lead electrocardiographic evidence, and laboratory test results were within the appropriate reference ranges (hematology, blood chemistry, and urinalysis). Patients were excluded from the study if they were dependent on methadone or on drugs other than heroin, nicotine, or caffeine (based on DSM-IV criteria); pregnant or lactating; unwilling to use a satisfactory method of birth control; currently diagnosed as having major DSM-IV Axis I psychiatric disorders (eg, mood disorder with functional impairment or schizophrenia) that might have interfered with study participation; considered to have a significant risk of suicide or had made 1 or more suicide attempts in the past year; had acute hepatitis or liver damage as evidenced by aspartate aminotransferase or alanine aminotransferase levels greater than 3 times the upper end of the laboratory reference range; had a history of allergy, adverse reaction, or sensitivity to the study medication; regularly used psychoactive drugs, including anxiolytics and antidepresants; currently received any other investigational drug; or had any medical condition that might have interfered with study participation or significantly increased the medical risks of study participation. Participants were recruited through advertising in local newspapers and through word of mouth. Written informed consent was obtained from all of the participants using a multistep process in which study procedures were explained by several staff members. This study was approved by the institutional review boards of the New York State Psychiatric Institute and the University of Pennsylvania.

STUDY DESIGN

The study was designed as a multicenter, randomized, double-blind, placebo-controlled, parallel-group, 8-week clinical trial. Patients received an initial inpatient detoxification, followed by oral naltrexone for 3 consecutive days to ensure that they were willing and able to tolerate the effects of depot naltrexone. Participants were then randomized to receive placebo or 192 or 384 mg of depot naltrexone (Depotrex; BIOTEK, Inc, Woburn, Mass). Four weeks later, patients received a second dose of the study medication. The same dose was administered on both occasions.

After each dose administration, patients attended the clinic twice per week to receive manualized relapse prevention therapy and to complete various questionnaires designed to assess drug craving, opioid withdrawal symptoms, and global functioning. At each visit, potential adverse events (AEs) were assessed, and patients provided urine samples for analysis of opioids, cocaine, benzodiazepines, cannabinoids, methadone, and amphetamine. Urine sample collections were observed by research staff, and the samples were subsequently analyzed by Northwest Toxicology Inc (Salt Lake City, Utah). Blood samples for liver function tests and for analysis of naltrexone and 6-β-naltrexol levels were collected weekly. Depression was assessed twice monthly, and patients met with a psychiatrist at least once per month. At the last study visit, hematology and blood chemistry profiles, liver function tests, urinalyses, electrocardiograms, and physical examinations were performed.

DEPOT NALTREXONE

A long-lasting, injectable formulation of naltrexone (Depotrex) was manufactured by BIOTEK, Inc and provided by the National Institute on Drug Abuse (Rockville, Md). Naltrexone microcapsules and placebo microspheres were packaged in sterile single-dose vials. After reconstituting in suspending medium, 2.4 mL of the suspension was injected. Each single-dose vial of the active formulation contained drug equivalent to 192 mg of naltrexone base. This formulation per vial was designed to release approximately 5 mg of naltrexone per day. The placebo formulation contained the equivalent weight in polymer microspheres. Injections were administered subcutaneously to the buttocks (1.8 mL injection per buttock) using an 18-gauge needle. All of the participants received 2 injections to maintain the dose masking. For the placebo dose, participants received 2 placebo injections; for the low dose, participants received 1 placebo and 1 naltrexone injection (192 mg of naltrexone base); and for the high dose, participants received 2 naltrexone injections (384 mg of naltrexone base).

DATA ANALYSIS

Analyses of the efficacy measures were conducted on the intention-to-treat population. Primary dependent measures were the average number of weeks in treatment and the percentage of urine toxicology samples negative for opioids during the 8 weeks of treatment. The number of negative samples collected in the 8-week treatment period was used to calculate the percentage for each patient. The denominator was the maximum number of possible samples for a completed patient, with the assumption that the missing visits and missing test results were positive. The data were also recalculated without those assumptions. The difference in the percentage of negative urine results between each naltrexone group and the placebo group and the difference between the 2 naltrexone groups were analyzed using a 2-way analysis of variance (ANOVA) model, including the treatment and medical center factors. The 3 pairwise comparisons and the 95% confidence intervals for the differences between treatments were performed using the Tukey method, controlling for the experiment-wise error rate at α = .05. Residuals of the ANOVA were analyzed to determine whether the normality assumption was violated. The Levene test was used to determine whether the assumption of homogeneity of variance was violated. If either assumption was violated, then the rank transformation or non-parametric procedure was applied instead. Consistency of the evaluation between the medical centers was examined using the ANOVA model with the added treatment × center interaction term should there be no signs of violation of the assumptions of ANOVA. Consistency of the evaluation across age, race, and sex for the primary efficacy measure was evaluated using either the ANOVA or the analysis of covariance model.

Secondary dependent measures included time to dropout; percentages of urine samples negative for cocaine, benzodiazepines, cannabinoids, amphetamine, and methadone; heroin crave-
ing scores; Clinical Global Impressions scale scores for severity of opiate and cocaine use rated by clinicians (CGIC) and patients (CGIS); and Hamilton Depression Rating Scale (HAM-D) total scores. The distributions of time to dropout in the 3 treatment groups were compared to determine the significance of the difference in retention between treatments. The number of days from randomization to dropout or completion of the study was summarized by treatment. The Kaplan-Meier method was used to estimate the distribution of the time to dropout, where completion of the study was handled as censored observations. The distribution of the time to dropout in each pair of treatment groups was compared using the log-rank test. The percentages of negative urine toxicology outcomes were examined using an ANOVA model. How much or how little the patient felt that he or she was compared using the Fisher exact test. The main effect of group was significant ($P=\ldots$.04). Pairwise comparisons between groups revealed a significant difference in days to dropout between the placebo and 384 mg of naltrexone groups ($P<.001$) and between the 2 active dose groups ($P=.046$).

URINE DRUG TOXICOLOGY

The mean percentage of urine samples negative for opioids across the study was lowest for the placebo group (25.3%) and highest for the 384 mg of naltrexone group (61.9%) ($Table 3$ and $Figure 3$). The main effect of group was significant ($P=.03$). Pairwise comparisons between groups revealed a significant difference between the placebo and the 192 mg of naltrexone groups ($P=.04$) and between the placebo and the 384 mg of naltrexone groups ($P<.001$). However, when the data were recalculated without the assumption that missing visits and missing samples were positive, the mean percentage of urine samples negative for opioids increased to 74.2% in the placebo group, 73.5% in the 192 mg of naltrexone...
Table 1. Demographic Characteristics of the 60 Study Participants

<table>
<thead>
<tr>
<th></th>
<th>Placebo Group (n = 18)</th>
<th>192 mg of Naltrexone Group (n = 20)</th>
<th>384 mg of Naltrexone Group (n = 22)</th>
<th>Total (N = 60)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>12 (67)</td>
<td>15 (75)</td>
<td>19 (86)</td>
<td>46 (77)</td>
<td>.38</td>
</tr>
<tr>
<td>F</td>
<td>6 (33)</td>
<td>5 (25)</td>
<td>3 (14)</td>
<td>14 (24)</td>
<td></td>
</tr>
<tr>
<td>Race, No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>7 (39)</td>
<td>7 (35)</td>
<td>8 (36)</td>
<td>22 (37)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>7 (39)</td>
<td>5 (25)</td>
<td>9 (41)</td>
<td>21 (35)</td>
<td>.34</td>
</tr>
<tr>
<td>Hispanic</td>
<td>3 (17)</td>
<td>5 (25)</td>
<td>3 (14)</td>
<td>11 (18)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0</td>
<td>0</td>
<td>2 (9)</td>
<td>2 (3)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1 (6)</td>
<td>3 (15)</td>
<td>0</td>
<td>4 (7)</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-30, No. (%)</td>
<td>3 (17)</td>
<td>4 (20)</td>
<td>4 (18)</td>
<td>11 (18)</td>
<td></td>
</tr>
<tr>
<td>31-59, No. (%)</td>
<td>15 (83)</td>
<td>16 (80)</td>
<td>18 (82)</td>
<td>49 (82)</td>
<td>.85</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>40 (11)</td>
<td>42 (10)</td>
<td>41 (11)</td>
<td>41 (10)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>20-59</td>
<td>26-59</td>
<td>19-56</td>
<td>19-59</td>
<td></td>
</tr>
<tr>
<td>Heroin use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>15.1 (11.8)</td>
<td>15.7 (12.0)</td>
<td>10.7 (9.8)</td>
<td>13.7 (11.1)</td>
<td>.39</td>
</tr>
<tr>
<td>Past month, d</td>
<td>29.3 (2.6)</td>
<td>28.7 (4.6)</td>
<td>24.4 (2.4)</td>
<td>29.2 (3.2)</td>
<td>.90</td>
</tr>
<tr>
<td>Methadone use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>1.5 (3.3)</td>
<td>1.1 (1.2)</td>
<td>3.0 (6.2)</td>
<td>1.9 (4.3)</td>
<td>.26</td>
</tr>
<tr>
<td>Past month, d</td>
<td>0.9 (1.8)</td>
<td>0.1 (0.4)</td>
<td>0.2 (0.5)</td>
<td>0.4 (1.1)</td>
<td>.14</td>
</tr>
<tr>
<td>Other opioid use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.56</td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>0.0 (0.1)</td>
<td>0.8 (2.6)</td>
<td>1.9 (7.8)</td>
<td>1.0 (5.0)</td>
<td></td>
</tr>
<tr>
<td>Past month, d</td>
<td>0.1 (0.3)</td>
<td>0.3 (1.0)</td>
<td>0.4 (1.2)</td>
<td>0.3 (1.0)</td>
<td>.63</td>
</tr>
<tr>
<td>Barbiturate use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1 (0.2)</td>
<td>0.0 (0.1)</td>
<td>.16</td>
</tr>
<tr>
<td>Past month, d</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>NA</td>
</tr>
<tr>
<td>Other sedative use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>0.1 (0.5)</td>
<td>0.3 (0.9)</td>
<td>0.3 (1.0)</td>
<td>0.3 (0.8)</td>
<td>.94</td>
</tr>
<tr>
<td>Past month, d</td>
<td>0.2 (0.8)</td>
<td>1.4 (3.8)</td>
<td>0.5 (1.3)</td>
<td>0.7 (2.3)</td>
<td>.30</td>
</tr>
<tr>
<td>Cocaine use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>4.4 (5.5)</td>
<td>4.8 (8.6)</td>
<td>3.6 (6.6)</td>
<td>4.2 (6.9)</td>
<td>.80</td>
</tr>
<tr>
<td>Past month, d</td>
<td>3.1 (5.7)</td>
<td>2.1 (4.5)</td>
<td>1.3 (2.4)</td>
<td>2.1 (4.3)</td>
<td>.54</td>
</tr>
<tr>
<td>Alcohol use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>2.0 (4.1)</td>
<td>0.3 (1.0)</td>
<td>2.3 (6.0)</td>
<td>1.6 (4.4)</td>
<td>.77</td>
</tr>
<tr>
<td>Past month, d</td>
<td>0.1 (0.3)</td>
<td>0.0</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.1)</td>
<td>.99</td>
</tr>
<tr>
<td>Cannabis use, mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime, y</td>
<td>5.5 (8.9)</td>
<td>9.2 (13.2)</td>
<td>9.8 (11.3)</td>
<td>8.3 (11.2)</td>
<td>.51</td>
</tr>
<tr>
<td>Past month, d</td>
<td>3.5 (8.1)</td>
<td>4.1 (8.8)</td>
<td>2.4 (5.8)</td>
<td>3.3 (7.5)</td>
<td>.78</td>
</tr>
</tbody>
</table>

*P values for comparisons of the distributions of sex and race among treatment groups are based on the Cochran-Mantel-Haenszel (general association) test stratified by medical center. P values for comparisons of the distributions of age and drug use among treatment groups are based on a 2-way analysis of variance model containing the effect of treatment and medical center.

Figure 1. Plasma levels of naltrexone (A) and 6-μ-naltrexol (B) by study week and treatment group. Error bars represent standard deviation.

Figure 2. Retention in treatment by study week and treatment group.
group, and 79.4% in the 384 mg of naltrexone group, and there were no significant differences among groups.

Similar trends in the average percentage of negative urine samples as a function of group were obtained for cocaine ($P = .003$), benzodiazepines ($P = .02$), amphetamine ($P = .03$), and methadone ($P = .05$) when the missing values were calculated as positive for the drug of interest (Figure 3). The difference among the 3 groups for cannabinoids was not significant ($P = .08$). The percentage of missing urine samples was inversely related to the percentage of negative urine samples, with the highest percentage of missing urine samples for the placebo group (64.4%), followed by the 192 mg of naltrexone group (42.7%) and the 384 mg of naltrexone group (29.4%) (Table 3).

Across time, the percentage of urine samples negative for cocaine was significantly lower in the placebo group than in the 192 mg of naltrexone group at week 1 (visit 2) (30.0% vs 90.9%; $P = .003$), week 2 (visit 4) (62.5% vs 93.8%; $P = .04$), week 5 (visit 10) (33.3% vs 100%; $P = .03$), and week 7 (visit 14) (0% vs 100%; $P = .01$). The percentage of urine samples negative for benzodiazepines and methadone was significantly lower in the placebo group than in the 384 mg of naltrexone group at week 7 (visit 14) (0% vs 100%; $P = .04$). There were no significant differ-

Table 2. Summary of Time to Dropout by Treatment Group

Time from Randomization to Dropout/Completion, d	Placebo Group (n = 18)	192 mg of Naltrexone Group (n = 20)	384 mg of Naltrexone Group (n = 22)	P Value	Pairwise Comparisons*
Mean (SD)	27 (19)	36 (20)	48 (13)	.002	
Range	2-65	1-60	16-59		

*P values for pairwise comparisons among treatment groups were based on a 2-way analysis of variance model containing the effect of treatment, medical center, and the medical center × treatment interaction. The pairwise comparisons and the 95% confidence intervals were performed using the Tukey method. †0 indicates placebo group; 192, 192 mg of naltrexone group; and 384, 384 mg of naltrexone group.

Table 3. Analysis of Negative Opioid Urine Samples by Treatment Group

Negative Opioid Urine Samples when Missing Samples Were Considered Positive, %‡	Placebo Group (n = 18)	192 mg of Naltrexone Group (n = 20)	384 mg of Naltrexone Group (n = 22)	Pooled SD	P Value	Pairwise Comparisons*
Mean (SD)	25.3 (17.2)	47.1 (38.2)	61.9 (28.7)	30.4	.03	
Range	0-64.7	0-100	0-100			

Recalculation: negative opioid urine samples when missing samples were not considered positive

| Mean (SD) | 74.2 (33.4) | 73.5 (33.2) | 79.4 (28.9) | 32.5 | .85 |
| Range | 0-100 | 0-100 | 0-100 |

Missing urine samples, %

| Mean (SD) | 64.4 (21.7) | 42.7 (32.4) | 29.4 (21.5) | 25.6 | .02 |
| Range | 11.8-88.2 | 0-88.2 | 0-82.4 |

*P values for pairwise comparisons among treatment groups were based on a 2-way analysis of variance model containing the effect of treatment, medical center, and the medical center × treatment interaction. The pairwise comparisons and the 95% confidence intervals were performed using the Tukey method. †0 indicates placebo group; 192, 192 mg of naltrexone group; and 384, 384 mg of naltrexone group. ‡The percentage was calculated for each participant using a denominator of 17 (2 samples per week for 8 weeks plus an additional sample collected when the second dose of depot naltrexone was administered). This denominator was used when the data were calculated with the assumption that missing urine samples were positive.
ences in the percentages of negative urine samples among groups for cannabinoids or amphetamine.

When the data were recalculated without the assumption that missing values were positive, there were no statistically significant differences between groups for any of the drugs. For cocaine, the average percentage of negative urine samples was lower, but not significantly so, in the placebo group (65.7%) compared with the 192 mg of naltrexone (86.0%) and 384 mg of naltrexone (83.9%) groups. The mean percentage of urine samples negative for cannabinoids ranged from 60.7% to 63.5% across the 3 groups, and the mean percentage of negative urine samples ranged from 87.8% to 100% for benzodiazepines, amphetamine, and methadone.

HEROIN CRAVING

At baseline, heroin craving was high for all 3 groups: mean ratings of “wanting heroin” and “needing heroin” ranged from 54 to 64 mm on a 100-mm scale. After receiving the study medication, the lowest heroin craving scores were reported by the 192 mg of naltrexone group for most visits (range, 1-28 mm). No statistically significant differences were found for ratings of wanting heroin among the treatment groups during the study (P = .22). However, patients who received active depot naltrexone reported needing heroin less than those who received placebo (P = .002). The pairwise comparisons for ratings of “needing heroin” showed that there were significant differences between the placebo and 192 mg of naltrexone groups (P < .001) and between the placebo and 384 mg of naltrexone groups (P < .001) but insignificant differences between the 192 and 384 mg of naltrexone groups (P = .20).

CLINICAL GLOBAL IMPRESSIONS SCALE AND HAM-D TOTAL SCORE

There was no obvious pattern of difference or statistical significance between the mean CGIC and CGIS scores across visits among the 3 treatment groups. Throughout the study, depression scores did not significantly differ across the 3 treatment groups. At baseline, mean HAM-D total scores for the placebo and 192 and 384 mg of naltrexone groups were 14.8 (n = 17), 14.6 (n = 19), and 13.3 (n = 20), respectively. By week 8 (visit 16), mean HAM-D total scores for the placebo and 192 and 384 mg of naltrexone groups were 4.0 (n = 2), 6.7 (n = 9), and 3.1 (n = 14), respectively.

ADVERSE EVENTS

Overall AEs

In the placebo group (n = 18), 9 patients (50%) experienced an AE, 4 (22%) experienced a treatment-related AE, and 1 (6%) discontinued study participation because of an AE. In the 192 mg of naltrexone group (n = 20), 13 patients (65%) experienced an AE, 8 (40%) experienced a treatment-related AE, and 2 (10%) discontinued because of an AE. In the 384 mg of naltrexone group (n = 22), 15 patients (68%) experienced an AE, 3 (14%) experienced a treatment-related AE, and none discontinued because of an AE. There were no significant differences among treatment groups in the number of AEs, treatment-related AEs, or discontinuations due to AEs.

Treatment-Related AEs

The most common treatment-related AEs were “general disorders and administration site conditions” (eg, fatigue, injection site induration, and injection site pain), where 2 AEs (11.1%) were reported in the placebo group, 6 (30.0%) were reported in the 192 mg of naltrexone group, and 3 (13.6%) were reported in the 384 mg of naltrexone group. Five patients who were discontinued from the study included 1 in the placebo group who experienced an injection site induration and 4 in the 192 mg of naltrexone group who experienced injection site redness, mass, and induration (n = 1); a headache (n = 1); and increases in liver function test results (n = 2) (see the following subsection). All of the injection site reactions were rated as moderate in severity and resolved spontaneously within 2 to 3 weeks.

Treatment-Emergent AEs

Two serious AEs occurred during the study. One 50-year-old patient developed diabetes mellitus after receiving the second dose of 384 mg of naltrexone. The relationship to the study medication was noted as being “unlikely.” Three months after the end of study participation, a patient who received 192 mg of naltrexone made a suicide attempt, which was deemed unrelated to the study.

Liver function test (aspartate aminotransferase, alanine aminotransferase, and γ-glutamyltransferase) values were within twice the upper limit of the reference range throughout the study, except for 1 participant who was discontinued before administration of the second set of injections owing to elevated γ-glutamyltransferase values (aspartate aminotransferase and alanine aminotransferase values were only mildly elevated). This patient was being treated for hepatitis C by his primary care physician, and it was believed that the most conservative medical approach would be to discontinue him from the study. A second patient demonstrated 4- to 7-fold increases in alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltransferase values over the values before nal-
A treatment for opioid dependence. The more

COMMENT

Although sustained-release preparations of naltrexone have been investigated since the 1970s, problems with biocompatibility have prevented their widespread use. The present study represents the first prospective, randomized, placebo-controlled clinical trial of a sustained-release formulation of naltrexone for the treatment of opioid dependence. The data demonstrate that this 30-day injectable form of naltrexone is safe and effective in retaining heroin-dependent patients in treatment. The fact that the percentage of urine samples negative for opioids was high (75%-80%) regardless of the depot naltrexone dose used suggests that patients who attend clinic visits are more likely to abstain from using opioids and other drugs of abuse, except possibly cocaine and cannabinoids. By increasing treatment retention, depot naltrexone treatment will allow patients greater contact with appropriate supportive counseling to reduce drug use and ease the transition to a life without heroin.

The mean±SD peak naltrexone plasma levels measured approximately 1 week after the administration of 192 and 384 mg of depot naltrexone were 1.9±0.6 and 3.2±0.7 ng/mL, respectively, which were consistent with the levels reported in a previous study of the same formulation of depot naltrexone. For comparison, a single oral dose of 50 mg of naltrexone produces mean peak naltrexone plasma concentrations of approximately 9 ng/mL 1 hour after drug administration. The mean half-life of naltrexone was 3.6 hours, with large individual variability in values, which is common with drugs subject to extensive first-pass metabolism. In general, many investigators agree that doses that maintain naltrexone plasma levels of approximately 2 ng/mL are sufficient for antagonizing the effects of high doses of opioid agonists.

One potential concern with a long-lasting antagonist is that patients will attempt to override the blockade by using large amounts of heroin, thereby placing themselves at increased risk for overdose, especially during the period when naltrexone blood levels are decreasing. This concern is particularly relevant given the literature in laboratory animals demonstrating an up-regulation in mu opioid receptors after discontinuation of long-term treatment with opioid antagonists.

Increased opioid overdose in patients after discontinuation of oral naltrexone maintenance compared with discontinuation of agonist replacement therapies. The more

appropriate comparison, however, would be between discontinuation of naltrexone and discontinuation of long-term abstinence because in both cases the former heroin user has remained free of opioids and thus there is significant loss of tolerance and greater risk of overdose. In the present study, several participants used heroin after receiving the depot injections, but there was no evidence that attempts to override the blockade were successful, and no accidental or intentional opioid overdoses occurred. In fact, a previous study demonstrated that the incidence of opioid overdoses dramatically decreased in “high-risk” adolescents treated with an implantable form of naltrexone. Another study by the same research group, using a larger sample size, also showed that the incidence of opioid overdose decreased after administration of a naltrexone implant, even beyond the period of expected effectiveness of the implant. It is possible that the gradual dissipation of naltrexone from these sustained-release formulations protected these patients from experiencing opioid overdose.

Another potential concern regarding use of a sustained-release formulation of naltrexone is that the use of non-opioid drugs may increase. This phenomenon apparently did not occur in the present study because other drug use remained relatively low throughout the study. These data are consistent with other studies demonstrating that other drug use declines when patients stop using heroin. However, one study concluded that sedative and perhaps other drug “overdoses” may increase after administration of a naltrexone implant. Several of the sedative overdoses occurred soon after implant administration, suggesting that the presence of residual opioid withdrawal symptoms may have prompted the use of benzodiazepines. Because patients who met the criteria for current dependence on other drugs of abuse were excluded from the present study, it is difficult to conclude confidently that other drug use does not increase after treatment with sustained-release naltrexone. Future studies with a more heterogeneous drug-abusing population should carefully assess potential changes in the amounts and patterns of other drug use.

Potential AEs that may be unique to sustained-release formulations of naltrexone include the possibility that patients will attempt to remove the medication and tissue reactions around the site of drug administration. In the present study, none of the participants attempted to remove the medication. This particular risk is lower for injectable depot formulations of naltrexone because patients are informed beforehand that it is impossible to remove the medication once it is administered. With implantable formulations of naltrexone, some reports, although rare, exist of patients attempting to remove the medication. Regarding tissue reactions around the site of injections, the formulation of depot naltrexone used in the present study was well tolerated. In the 2 patients dropped from the study because of injection site reactions, the severity was considered to be moderate, and both reactions resolved spontaneously over time.

Impairment in liver function is a common concern with naltrexone therapy because early studies suggested that high doses of naltrexone may produce hepatotoxicity. However, several subsequent studies including those

(Reprinted) Arch Gen Psychiatry/Vol 63, Feb 2006 www.archgenpsychiatry.com

©2006 American Medical Association. All rights reserved.
conducted in alcoholic individuals and in patients with severe liver disease, generally have not shown clinically significant changes in liver function after treatment with naltrexone. Except for a patient who was diagnosed as having new-onset hepatitis C after depot naltrexone administration, clinically significant elevations in liver enzyme levels did not occur in the present study, and neither did they occur in a previous study with the same formulation of depot naltrexone. The hepatitis resolved uneventfully in the patient who received 192 mg of depot naltrexone just before being diagnosed as having hepatitis C. A similar case was reported in a patient who received a naltrexone implant. These results are particularly reassuring given the high prevalence of hepatitis C among injecting heroin users.

In summary, the present results demonstrate that this injectable, sustained-release formulation of naltrexone is safe, well tolerated, and effective in retaining patients in treatment. An increase in treatment retention is particularly important because it will allow clinicians sufficient time to engage patients in psychotherapy so that they can learn to make other psychological and social adjustments that support a life without opioids. Medication noncompliance has been cited as a major problem with oral naltrexone therapy, making firm conclusions regarding the efficacy of naltrexone in the treatment of opioid dependence difficult. One reason for high treatment dropout is that discontinuation of naltrexone ingestion has no negative physical consequences, as opposed to discontinuation of agonist maintenance therapies, which results in the emergence of opioid withdrawal symptoms. For most opioid abusers, the decision of whether to take a medication that produces no psychoactive effects or to “get high” is a difficult one. The availability of sustained-release formulations of naltrexone holds the promise of allowing patients to circumvent their ambivalence to taking the medication and to focus instead on other issues relevant to sustaining abstinence.

Submitted for Publication: February 16, 2005; final revision received July 25, 2005; accepted August 18, 2005.

Correspondence: Sandra D. Comer, PhD, New York State Psychiatric Institute and College of Physicians and Surgeons of Columbia University, 1051 Riverside Dr, Unit 120, New York, NY 10032 (sdc10@columbia.edu).

Funding/Support: This research was supported by center grants P50 DA09236 and P60 DA05186 from the National Institute on Drug Abuse (NIDA) (Bethesda, Md) and the VA/NIDA Intergancy Agreement at Philadelphia VA Medical Center. Biopharmaceutical Research Consultants Inc received funding for data management and statistical support under contract N01DA-1-8817, and the University of Utah and Northwest Toxicology Inc received funding for bioanalytical support under contract N01DA-3-8829 from NIDA.

Previous Presentation: This study was presented in part at the annual meeting of the College on Problems of Drug Dependence; June 13, 2004; San Juan, Puerto Rico.

Acknowledgment: We thank Pamela Parris, Meredith Kelly, Sarah Dubner, and Andre Roche for their assistance with data collection; Randi Adelman, RN, and Gary Pagliaro, RN, for their medical assistance; Edward Nunes, MD, and Kenneth Carpenter, PhD, for reviewing an early draft of the manuscript; and Elie Nuwayser, PhD, and James Kerrigan, MS, of BIOTEK, Inc, for providing instructions on the proper methods of preparing, administering, and storing Depotrelax, as well as their ongoing advice during the study. Finally, we thank C. Nora Chiang, PhD, and Richard L. Hawks, PhD, for their scientific advice throughout the study.

REFERENCES

11. Harrigan SE, Downs DA. Pharmacological evaluation of narcotic antagonist de-
livery systems in thessus monkeys. In: Wilte RE, Barnett G, eds. Narcotic Anti-
agonists: Naltrexone Pharmacoochemistry and Sustained-Release Prepara-
research monograph 28.

ingfield JE. Safety and pharmacokinetics of a new formulation of naltrexone.
National Institute on Drug Abuse; 1994. NIDA research monograph 141; NIH pub-
lication 94-3749.

23. Martin W, Sandquist VL. A sustained release depot for narcotic antagonists. Arch
Gen Psychiatry. 1974;30:31-33.

24. Meyer MC, Straughn AB, Lo M-W, Schary WL, Whitney CC. Bioequivalence, dose-
proportionality, and pharmacokinetics of naltrexone after oral administration.

25. Bardo MT, Bhatnagar RK, Gebhart GF. Chronic naltrexone increases opiate bind-
ing in brain and produces supersensitivity to morphine in the locus coeruleus of

26. Bardo MT, Neisewander JL. Chronic naltrexone supersensitizes the reinforcing
and locomotor-activating effects of morphine. Pharmacol Biochem Behav. 1987;

27. Paronis CA, Holtzman SG. Increased analgesic potency of mu agonists after con-

28. Paronis CA, Holtzman SG. Sensitization and tolerance to the discriminative stimu-
lus effects of mu-opioid agonists. Psychopharmacology (Berl). 1994;114:
601-610.

29. Tempel A, Gardner EL, Zukin RS. Neurochemical and functional correlates of nal-
trexone-induced opioid receptor up-regulation. J Pharmacol Exp Ther. 1985;
232:439-444.

30. Tempel A, Zukin S, Gardner EL. Supersensitivity of brain opiate receptor sub-

31. Yoburn BC, Inturrisi CE. Modification of the response to opioid and nonopioid

32. Young AM, Mattox SR, Doty MD. Increased sensitivity to rate-altering and dis-
criminative stimulus effects of morphine following continuous exposure to nal-

33. Untervald EM. Rubenfeld JM, Imai Y, Wang J-B, Uhl GR, Kreek MJ. Chronic opi-
oid antagonist administration upregulates mu opioid receptor binding without altering
mu opioid receptor mRNA levels. Brain Res Mol Brain Res. 1995;33:
351-355.

Naltrexone maintenance: effect on morphine sensitivity in normal volunteers. Am

35. Ritter AJ. Naltrexone in the treatment of heroin dependence: relationship with

Serious adverse events in the Australian National Evaluation of Pharmacothera-

37. Hulse G, Tait R. A pilot study to assess the impact of naltrexone implant on
accidental opiate overdose in “high risk” adolescent heroin users. Addict Biol.
2003;8:337-342.

38. Hulse G, Tait R, Comer SD, Sullivan MA, Jacobs IG, Arnold-Reed D. Reducing
hospital presentations for opioid overdose in patients treated with sustained re-

39. Dunteman GH, Condelli WS, Fairbank JA. Predicting cocaine use among metha-
done patients: analysis of findings from a national study. Hosp Community

40. Fairbank JA, Dunteman GH, Condelli WS. Do methadone patients substitute other
drugs for heroin? predicting substance use at 1-year follow-up. Am J Drug Alco-

41. Malcolm R, O’Neil PM, Sexauer JD, Riddle FE, Currey HS, Counts C. A con-

42. Brahnen LS, Capone TJ, Capone DM. Naltrexone: lack of effect on hepatic enzymes.

43. Croop RS, Faulkner EB, Labriola DF. The safety profile of naltrexone in the treat-
ment of alcoholism. Arch Gen Psychiatry. 1997;54:1130-1135.

44. Marrazzi MA, Wroblewski JM, Kinzie J, Luby ED. High-dose naltrexone and liver

46. Brewer C, Wong JS. Naltrexone: report of lack of hepatotoxicity in acute viral

47. Freeman AJ, Zickry A, Whybun LR, Harvey CE, van Beek IA, de Kantzow SL, Raw-
linson WD, Boughton CR, Robertson PW, Marinis G, Lloyd AR. Hepatitis C preva-
cence among Australian injecting drug users in the 1970s and profiles of virus

review on the efficacy of naltrexone maintenance treatment in opioid dependence.