Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia

Leisa A. Glantz, PhD; David A. Lewis, MD

Background: The pathophysiological characteristics of schizophrenia appear to involve altered synaptic connectivity in the dorsolateral prefrontal cortex. Given the central role that layer 3 pyramidal neurons play in corticocortical and thalamocortical connectivity, we hypothesized that the excitatory inputs to these neurons are altered in subjects with schizophrenia.

Methods: To test this hypothesis, we determined the density of dendritic spines, markers of excitatory inputs, on the basilar dendrites of Golgi-impregnated pyramidal neurons in the superficial and deep portions of layer 3 in the dorsolateral prefrontal cortex (area 46) and in layer 3 of the primary visual cortex (area 17) of 15 schizophrenic subjects, 15 normal control subjects, and 15 nonschizophrenic subjects with a psychiatric illness (referred to as psychiatric subjects).

Results: There was a significant effect of diagnosis on spine density only for deep layer 3 pyramidal neurons in area 46 (P = .006). In the schizophrenic subjects, spine density on these neurons was decreased by 23% and 16% compared with the normal control (P = .004) and psychiatric (P = .08) subjects, respectively. In contrast, spine density on neurons in superficial layer 3 in area 46 (P = .09) or in area 17 (P = .08) did not significantly differ across the 3 subject groups. Furthermore, spine density on deep layer 3 neurons in area 46 did not significantly (P = .81) differ between psychiatric subjects treated with antipsychotic agents and normal controls.

Conclusion: This region- and disease-specific decrease in dendritic spine density on dorsolateral prefrontal cortex layer 3 pyramidal cells is consistent with the hypothesis that the number of cortical and/or thalamic excitatory inputs to these neurons is altered in subjects with schizophrenia.

Arch Gen Psychiatry. 2000;57:65-73
SUBJECTS AND METHODS

SUBJECT CHARACTERISTICS

Specimens from 43 human brains were obtained during autopsies conducted at the Allegheny County Coroner’s Office, Pittsburgh, Pa (Table 1). Informed consent for brain donation was obtained from the next of kin. Neuropathological abnormalities were detected in 6 subjects. Subject 517 had a vascular malformation and hemorrhage confined to the right temporal lobe, and subject 622 had an acute infarction limited to the distribution of the right middle cerebral artery. However, the cortical regions of interest for the present study were not affected in either subject. In 4 subjects (subjects 532, 564, 609, and 632), thioflavine S staining revealed a few senile plaques without any neurofibrillary tangles. The density of plaques was insufficient to meet the diagnostic criteria for Alzheimer disease,35 and there was no history of dementia in any subject.

Fifteen subjects with a diagnosis of schizophrenia or schizoaffective disorder were compared with 15 normal control subjects and 15 nonschizophrenic subjects with a psychiatric illness (referred to as psychiatric subjects) (Table 1). For each subject, an independent committee of experienced clinicians made consensus DSM-III-R19 diagnoses using information obtained from clinical records and structured interviews conducted with surviving relatives of the subject.21 One of the normal controls (subject 370) was later found to have a diagnosis of alcohol abuse, current at the time of death. Thirteen of the subjects in the psychiatric comparison group had a mood disorder, and 2 had other psychotic disorders. All of the schizophrenic subjects had a history of treatment with antipsychotic agents, and 9 of the psychiatric subjects had been treated with these medications. All procedures were approved by the Institutional Review Board for Biomedical Research at the University of Pittsburgh, Pittsburgh, Pa.

SPINE DENSITY ON LAYER 3 PYRAMIDAL NEURONS

The Golgi impregnation procedure clearly filled the basilar dendritic shafts and spines of layer 3 pyramidal neurons. As shown in Figure 2, differences in spine density among neurons and across brains were sometimes quite evident.

In DLPFC area 46 (Table 3), the mean spine density on the basilar dendrites of pyramidal neurons in superficial layer 3 of the schizophrenic subjects was 15% lower than that of the normal controls and 13% lower than that of the psychiatric subjects (Figure 3, A). However, these differences did not achieve statistical significance (F2,37 = 2.52, P = .09).

In contrast, the spine density on the basilar dendrites of pyramidal neurons in deep layer 3 of area 46 did significantly differ (F2,37 = 6.01, P = .006) among the 3 subject groups (Table 3). There was also a main effect for age (F1,37 = 8.49, P = .006) on spine density, but re-analysis failed to reveal a significant age-by-diagnosis interaction (F2,36 = 1.87, P = .17). In addition, there was no effect of race, sex, PMI, or tissue fixation time (F1,35 < .086, P > .47) on spine density.

As shown in Figure 3, B, the mean spine density on pyramidal neurons in deep layer 3 was 23% lower (95% confidence interval, −42.3% to −6.7%) in the schizophrenic subjects than in the normal controls, a differ-
and 55% of the distance from the pial surface to the white matter in area 46 were considered to be located in layer 3. In Golgi-processed sections containing area 17, a dark band demarcated layer 4. Therefore, sampled neurons were located superficially to this band or within 20% to 45% of the distance from the pial surface to the white matter.

NEURON RECONSTRUCTIONS

Golgi-impregnated pyramidal neurons were readily identified by their characteristic triangular somal shape, apical dendrite extending toward the pial surface, and numerous dendritic spines. The following criteria were used to select pyramidal neurons for reconstruction: (1) location of the cell soma in layer 3 and within the middle of the thickness (z-axis) of the section; (2) full impregnation of the neuron; (3) soma or dendrites not obscured by overlying opaque artifacts larger than 5 µm; (4) no morphologic changes attributable to PMI; and (5) presence of at least 3 primary basilar dendritic shafts, each of which branched at least once. For each subject, 15 neurons were randomly sampled in each of 3 locations: (1) the superficial half of layer 3 (20%-37% of the total cortical depth) in area 46, (2) the deep half of layer 3 (38%-55% of the total cortical depth) in area 46, and (3) layer 3 of area 17. The adequacy of these sampling procedures for detecting differences in spine density has been previously demonstrated.

For each neuron, the longest basilar dendrite, including all branches, was reconstructed in 3 dimensions with a tracing system (Neuron Tracing System; Eutechics Electronics Inc, Raleigh, NC) and a ×100 oil immersion objective. Only those portions of the dendritic tree within the same section as the cell soma were reconstructed. Because apical dendrites are frequently truncated during sectioning, these dendrites were not examined. Each dendritic branch was recorded as having either a natural end (gradual tapering of dendritic thickness with an end swelling, spine, or spine cluster) or an artificial end (cut dendrite). For each basilar dendrite and its branches, the mean diameter and total length, the location and number of spines, the total number of dendritic segments (the portion of a dendrite located between either the soma or a dendritic bifurcation and either another bifurcation or the dendrite end), and the maximum branch order (highest numbered dendritic segment) of the dendrites were determined. The cross-sectional area of each cell body was determined by tracing its outline. All neurons were reconstructed by the same investigator (L.A.G.) without knowledge of the subject number or diagnostic group.

STATISTICAL ANALYSES

For each parameter measured, the results were analyzed using a multivariate analysis of covariance model with the independent variables of diagnostic group, sex, age, race, PMI, and tissue fixation time. The multiple observations per subject (15 neurons) for a particular parameter were treated as a multivariate observation. Because the measured parameters within a given subject were possibly correlated and were also exchangeable, they were modeled as repeated measures with a compound, symmetric covariance structure. To preserve degrees of freedom, the interactions with diagnostic group were only examined if the effect of a particular independent variable was significant (P<.05). For any neuron parameter in which the multivariate analysis of covariance test yielded a significant diagnostic group effect at the .05 level, post hoc simultaneous pairwise comparisons using the Bonferroni procedure at the .05 level were conducted to determine which of the groups’ means differed significantly. Simultaneous 95% confidence intervals were also obtained for each pairwise comparison of diagnostic groups. Finally, paired t tests were used to compare spine density across layers within subject groups.

ence significant at P = .004 by post hoc comparisons. Furthermore, although spine density did not differ (t = 0.52, P = .61) between superficial and deep layer 3 pyramidal neurons in the normal controls (Table 3), spine density was significantly (t = 3.65, P = .003) decreased by 11% in deep layer 3 relative to superficial layer 3 in the subjects with schizophrenia. These comparisons confirm a laminar specificity to the spine density differences between schizophrenic and normal control subjects.

Compared with the psychiatric subjects, the mean spine density on deep layer 3 pyramidal neurons in the schizophrenic subjects was decreased by 16%. Although this difference did not achieve statistical significance (P = .08), the 95% confidence interval (−35.8% to 4.9%) was suggestive of a reduction in spine density in the schizophrenic subjects compared with the psychiatric subjects. In contrast, the mean spine density clearly did not differ (P = .81) between the psychiatric and control subjects.

In contrast to area 46, the spine density on layer 3 pyramidal neurons in area 17 (Figure 3, C), primary visual cortex, was decreased in the schizophrenic (13%) and psychiatric (11%) subjects relative to the normal controls (Table 4). However, these differences did not achieve statistical significance (F2,34 = 2.70, P = .08).

OTHER PARAMETERS OF LAYER 3 PYRAMIDAL NEURONS

In superficial layer 3 of area 46, only somal size significantly (F2,27 = 3.84, P = .03) differed among the 3 groups, and post hoc comparisons revealed that this difference was due to a smaller somal size in the psychiatric subjects compared with the normal controls (Table 3). In deep layer 3 of area 46, only total dendritic length (TDL) differed significantly (F2,27 = 4.17, P = .02) among the 3 groups. Post hoc comparisons revealed that the normal control group had a significantly (P<.05) greater TDL than the schizophrenic and psychiatric groups, which did not differ from each other. Interestingly, an analysis of covariance for spine density, controlling for TDL, in the schizophrenic and control groups revealed that the group difference in spine density on deep layer 3 pyramidal neurons was more highly significant (F1,27 = 15.2, P<.001) than that indicated by the initial analysis. In layer 3 of the primary visual cortex, TDL (F2,34 = 4.11, P = .03),
number of branch segments ($F_{2,34} = 4.41, P = .02$), and maximum branch order ($F_{2,34} = 4.27, P = .02$) differed significantly among the diagnostic groups (Table 4). For each measure, the main effect was due to significantly lower values in the psychiatric subjects compared with the control and schizophrenic subjects.

EFFECT OF ANTIPSYCHOTIC MEDICATIONS ON SPINE DENSITY

To determine whether treatment with antipsychotic medications might account for the decreased spine density on DLPFC deep layer 3 pyramidal neurons in the schizophrenic subjects, we conducted a separate analysis of the 9 psychiatric subjects who had been treated with these medications (Table 1). The mean (\pmSD) spine density (measured as number of spines per micrometer) on deep layer 3 pyramidal neurons in these subjects (0.30 ± 0.07) did not significantly differ from that of either the entire group of normal controls ($0.33 \pm 0.08, F_{1,10} = 0.47, P = .50$) or a subset of 9 normal controls ($0.31 \pm 0.05, F_{1,12} = 0.06, P = .81$) who, as a group, did not differ from the antipsychotic-treated psychiatric subjects in sex, age, or PMI.

These findings demonstrate that the density of basilar dendritic spines on deep layer 3 pyramidal neurons is significantly decreased in DLPFC area 46 of subjects with schizophrenia. This decrease does not appear to be a general correlate of having a psychiatric illness or a consequence of treatment with antipsychotic medications, suggesting that the decrease in spine density may be specific to the pathophysiological characteristics of schizophr-
nia. Because dendritic spine density directly reflects the number of excitatory inputs to pyramidal neurons, these findings, in concert with those of a pilot study that also reported decreased spine density on prefrontal layer 3 pyramidal neurons, support the hypothesis that schizophrenia is associated with diminished synaptic connectivity of the DLPFC.

In superficial layer 3 of area 46 and in layer 3 of area 17, pyramidal cells exhibited a trend toward decreased spine density in the schizophrenic subjects compared with the normal controls. Evidence suggestive of decreased cortical neuropil has been reported in both of these cortical regions. However, in area 17, the psychiatric subjects also showed a trend toward decreased spine density on layer 3 pyramidal neurons. In addition, other measures of dendritic morphologic characteristics (TDL, number of branch segments, and maximum branch order) appeared to be altered in area 17 of the psychiatric subjects, suggesting that a history of depression or death by suicide may be associated with altered neuronal morphologic characteristics in the primary visual cortex.

Interpretation of the pathophysiological significance of reduced spine density in the DLPFC requires a consideration of the potential influence of other factors. First, only a small percentage of neurons are labeled with the Golgi technique. However, because the impregnation process is random, the cells reconstructed in this study are likely to be representative of the neuronal populations of interest. This interpretation is supported by our finding of a 9% to 12% decrease in mean somal size of layer 3 pyramidal neurons in the schizophrenic subjects. Although these differences were not significant, perhaps because of sample size, their magnitude is consistent with that of other reports that measured somal size in much larger samples of Nissl-stained neurons. Second, because the reaction product
of the Golgi impregnation procedure is opaque, some spines are hidden behind the dendritic shaft and are not counted. Consequently, the spine densities reported in this study are relative and not absolute. However, previous studies have demonstrated that relative spine counts accurately reflect absolute numbers if comparisons are made between dendrites with similar shaft diameters, and, as shown in Tables 3 and 4, mean dendritic diameter did not differ across our subject groups.

Third, the schizophrenic and psychiatric subjects available for this study were somewhat diagnostically heterogeneous. However, the mean (±SD) spine density in DLPFC deep layer 3 of the subjects with “pure” schizophrenia (0.25 ± 0.06; n = 10) was 23% lower than that of the normal controls (0.32 ± 0.07; n = 14) and of the psychiatric subjects with major depression (0.33 ± 0.04; n = 10).

All of the schizophrenic subjects in this study had a history of treatment with antipsychotic agents. Studies addressing the effect of haloperidol on spine density in the rat prefrontal cortex have been inconclusive, with spine density reported to be decreased following high-dose, short-term treatment but unchanged following long-term treatment at levels more consistent with clinical practice. However, 3 lines of evidence suggest that antipsychotic medications do not account for the decreased dendritic spine density observed in the present study. First, the decrease in spine density exhibited regional and laminar specificity, an effect that is not readily explained by systemically administered agents. Second, the 4 schizophrenic subjects (subjects 410, 450, 537, and 622) who were not taking medications (for an average of 5.4 months) at the time of death actually had a lower spine density (0.24 ± 0.08) in deep layer 3 of area 46 than did the 11 subjects who were taking medications (0.26 ± 0.06). Finally, the 9 psychiatric subjects who had been treated with antipsychotic medications did not differ in spine density from normal controls. However, the lifetime exposure to antipsychotic medications is likely to have been lower in these psychiatric subjects than in the schizophrenic subjects.

Although decreased spine density represents a morphologic abnormality in the DLPFC of schizophrenic subjects, dendritic spines are relatively plastic structures. For example, spine number has been reported to change rapidly in certain brain regions of experimental animals under various conditions. Although we cannot completely exclude the influence of such factors, their impact may have been minimized by the study design. For ex-

Table 2. Summary of Subject Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control</th>
<th>Schizophrenic</th>
<th>Psychiatric</th>
<th>P†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male-female ratio</td>
<td>9.6</td>
<td>7.8</td>
<td>9.6</td>
<td>.71</td>
</tr>
<tr>
<td>White-black ratio</td>
<td>11.4</td>
<td>10.5</td>
<td>14.1</td>
<td>.20</td>
</tr>
<tr>
<td>Age, y</td>
<td>50.9 ± 16.2</td>
<td>47.7 ± 10.5</td>
<td>48.7 ± 17.2</td>
<td>.84</td>
</tr>
<tr>
<td>PMI, h</td>
<td>14.2 ± 5.5</td>
<td>16.1 ± 7.7</td>
<td>15.4 ± 4.8</td>
<td>.73</td>
</tr>
<tr>
<td>Fixation time, mo</td>
<td>12.5 ± 10.1</td>
<td>10.7 ± 9.4</td>
<td>8.2 ± 6.6</td>
<td>.43</td>
</tr>
<tr>
<td>Alcohol disorder‡</td>
<td>1 (7)</td>
<td>7 (47)</td>
<td>8 (53)</td>
<td>.59</td>
</tr>
<tr>
<td>Other substance disorder</td>
<td>0 (0)</td>
<td>2 (13)</td>
<td>5 (33)</td>
<td>.17</td>
</tr>
<tr>
<td>Age at onset, y§</td>
<td>NA</td>
<td>28.6 ± 9.4</td>
<td>36.7 ± 18.3</td>
<td>.23</td>
</tr>
<tr>
<td>Duration of illness, y§</td>
<td>NA</td>
<td>20.7 ± 5.9</td>
<td>14.0 ± 11.8</td>
<td>.09</td>
</tr>
<tr>
<td>Out-of-hospital deaths</td>
<td>13 (87)</td>
<td>11 (73)</td>
<td>14 (93)</td>
<td>.19</td>
</tr>
<tr>
<td>Suicide</td>
<td>0 (0)</td>
<td>2 (13)</td>
<td>11 (73)</td>
<td>.005</td>
</tr>
</tbody>
</table>

* Data are given as number (percentage) of subjects or mean ± SD. PMI indicates postmortem interval; NA, data not applicable.
† Analyses were between all 3 groups for the following variables: sex, race, age, PMI, fixation time, and out-of-hospital deaths. Analyses were conducted only between the schizophrenic and psychiatric groups for the following variables: alcohol disorder, other substance disorder, age at onset, duration of illness, and suicide.
‡ After the study was initiated, 1 control subject (subject 370) was determined to meet the criteria for alcohol abuse, current at the time of death.
§ This information could not be reliably determined for 2 schizophrenic and 2 psychiatric subjects.
example, the comparison with subjects with mood or other psychotic disorders provides some assessment of the influence of environmental factors, such as hospitalizations, medications, and limitations in social and occupational activities, associated with being severely ill with a psychiatric disorder. In addition, spine density in deep layer 3 of area 46 was not associated with the duration of illness in either the schizophrenic (r = −0.038, P = .26) or psychiatric (r = −0.009, P = .98) subjects. However, the plasticity of dendritic spines suggests that the findings of this study, like many other observations in postmortem studies (alterations in gene expression or neurotransmitter receptor number), may not reflect a fixed lesion in the DLPFC of schizophrenic subjects.

Because the presynaptic and postsynaptic elements of axospinous synapses change in parallel, the decreased spine density in schizophrenic subjects is likely to reflect a diminished number of excitatory synaptic inputs to DLPFC layer 3 pyramidal neurons. This interpretation is consistent with previous reports of decreased synaptophysin protein and neurolipid measures in the DLPFC of schizophrenic subjects. Interestingly, dendritic spine density on layer 3 pyramidal neurons undergoes a substantial decline during adolescence in primates. In addition, the density of asymmetric (presumably excitatory) synapses changes in a similar manner in the monkey and human DLPFC. These late developmental refinements in the excitatory circuitry of the DLPFC coincide with the age when the clinical manifestations of schizophrenia frequently first appear, suggesting that they may contribute to the pathophysiological characteristics of this disorder. However, we cannot...
determine from the present study whether the presynaptic terminals to DLPFC layer 3 pyramidal neurons never developed, were extensively pruned during adolescence, or were resorbed later in life.

The functional significance of a decrease in excitatory inputs depends on which population(s) of axon terminals is affected. Several lines of evidence suggest that the affected inputs may be from the mediodorsal thalamic nucleus. First, this nucleus has been reported to have fewer neurons in schizophrenic subjects. Second, spine density was preferentially decreased on pyramidal neurons in deep layer 3 of the DLPFC. The basilar dendrites of these neurons typically extend through deep layer 3 and layer 4, the termination zone of afferents from the mediodorsal thalamic nucleus, and dendritic spines appear to be the principal synaptic targets of thalamic projections. Finally, decreased expression of the messenger RNA for GAD$_{57}$, the synthesizing enzyme for γ-aminobutyric acid, in the DLPFC of schizophrenic subjects has been suggested to represent a compensatory response to diminished excitatory thalamic drive, since decreased activity in thalamic inputs to sensory cortices produces a down-regulation of GAD$_{57}$ expression.

However, the observations of this study may not be fully explained by a reduction in thalamic inputs to the DLPFC. For example, thalamocortical afferents appear to compose a small proportion (<10%) of the total excitatory inputs to the targeted cortical neurons in the cat visual cortex. If these findings can be extrapolated to the human DLPFC, then even a complete loss of thalamocortical afferents would not be sufficient to account for the observed 16% to 23% decrease in basilar dendritic spine density on deep layer 3 pyramidal cells in the schizophrenic subjects. Two other major sources of excitatory inputs to deep and superficial layer 3 DLPFC pyramidal neurons are intrinsic axon collaterals from other pyramidal neurons and associational or callosal projections from other cortical regions. Thus, given the trend for spine density to also be decreased on superficial layer 3 pyramidal cells, it may be that abnormalities in thalamocortical afferents to deep layer 3 have an additive effect to a disturbance in cortical axon terminals that are distributed across layer 3. However, our findings do not reveal the direction of the pathophysiological changes. For example, it is possible that the inputs to DLPFC layer 3 pyramidal cells are reduced not because of a primary memory disturbance in the source of the inputs but because an abnormality intrinsic to these pyramidal cells renders them unable to support a normal complement of excitatory inputs.

In summary, our findings provide evidence for a decrease in excitatory inputs to DLPFC layer 3 pyramidal cells that may be most marked for pyramidal cells located in the thalamic recipient zone. Given the role of thalamic excitatory inputs in the mediation of working memory, these findings may contribute to the pathophysiological basis for the disturbance of these cognitive abilities in subjects with schizophrenia.

Accepted for publication July 22, 1999.

This study was supported by grants MH00519 and MH45156 from the US Public Health Service, Bethesda, Md; and the Scottish Rite Schizophrenia Research Program, N.M.J., Lexington, Mass.

We thank Allan Sampson, PhD, and Sungyoung Ahn, MA, for statistical consultations; and Mary Brady for photographic assistance.

Reprints: David A. Lewis, MD, University of Pittsburgh, 3811 O'Hara St, W1650 Biomedical Science Tower, Pittsburgh, PA 15213 (e-mail: lewisda@msx.upmc.edu).

REFERENCES

37. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS,

41. Lewis DA, Campbell MJ, Terry RD, Morrison JH. Laminar and regional distribu-

47. Pierri JN, Edgar CL, Lewis DA. Somal size of prefrontal cortical pyramidal neu-

24. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffen WST. Al-

terations in synaptic proteins and their encoding mRNAs in prefrontal cortex in

25. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of

growth-associated protein GAP-43 are selectively increased in association cor-

26. Honer WG, Falkai P, Chen C, Arango V, Mann JN, Dwork AJ. Synaptic and plasticity-

27. Giguere M, Goldman-Rakic PS. Mediodorsal nucleus: areal, laminar, and tan-

gential distribution of afferents and efferents in the frontal lobe of rhesus mon-

30. Manaye KF, Liang C-L, Hicks PB, German D, Young KA. Nerve cell numbers in

32. DeFelipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphologi-

33. Bourgeois J-P, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cor-

34. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in hu-

35. DeFelipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphologi-

cal and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;

37. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS,

40. Lund JS. Organization of neurons in the visual cortex, area 17, of the monkey

41. Lewis DA, Campbell MJ, Terry RD, Morrison JH. Laminar and regional distribu-

42. Bryan GK, Riesen AH. Depressed somatosensory-motor experience in stump-

tailed monkey neocortex: dendritic spine density and dendritic branching of layer

43. Bryan GK, Riesen AH. Depressed somatosensory-motor experience in stump-

tailed monkey neocortex: dendritic spine density and dendritic branching of layer

44. Bryan GK, Riesen AH. Depressed somatosensory-motor experience in stump-

tailed monkey neocortex: dendritic spine density and dendritic branching of layer

47. Pierri JN, Edgar CL, Lewis DA. Somal size of prefrontal cortical pyramidal neu-

73. Lewis DA. Development of the prefrontal cortex during adolescence: insights into
curable neural circuits in schizophrenia. Neuropsychopharmacology. 1997;

74. Lewis DA, Anderson SA. The functional architecture of the prefrontal cortex and

75. Moser M-B, Tormland M, Andersen P. An increase in dendritic spine density on

hippocampal CA1 pyramidal cells following spatial learning in adult rats sug-
gests the formation of new synapses. Proc Natl Acad Sci U S A. 1994;91:12673-

76. Buzsaki G, Schwartz ML. Interdigitation of contralateral and ipsilateral mouse
cortical axodendritic synapses following long-term treatment with haloperi-

77. Brock JW, Prasad C. Alterations in dendritic spine density in the rat brain asso-

78. Bryan GK, Riesen AH. Depressed somatosensory-motor experience in stump-
tailed monkey neocortex: dendritic spine density and dendritic branching of layer

79. Arnold SE, Amaral D, Insausti R. Diencephalic projections to frontal association cor-

cita; 1987.

80. Ingham CA, Hood SH, Taggart P, Arambhottt N. Plasticity of synapses in the rat

82. Jones EG. GABAergic neurons and their role in cortical plasticity. Cereb Cortex.

84. Jacobson MD, Buchwald PA, North RA. The role of the fornix in the regulation

development of the prefrontal cortex during adolescence: insights into vulnerable

85. Umeda T, Kuroda M, Bito H, Kimura S, Otsuka T, Kato H. Quantitative analysis of
cortical GABAergic neurons in the prefrontal cortex of nonhuman primates. Soc

86. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

87. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

88. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

89. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

90. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

91. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

92. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

93. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

94. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

95. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

96. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

97. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

98. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

99. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;

100. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state." A practical method for
detection of organic brain syndromes in the elderly. Arch Gen Psychiatry. 1975;