Decrease in Reelin and Glutamic Acid Decarboxylase₆₇ (GAD₆₇) Expression in Schizophrenia and Bipolar Disorder

A Postmortem Brain Study

Alessandro Guidotti, MD; James Auta, PhD; John M. Davis, MD; Valeria DiGiorgi Gerevini, PhD; Yogesh Dwivedi, PhD; Dennis R. Grayson, PhD; Francesco Impagnatiello, PhD; Ghanshyam Pandey, PhD; Christine Pesold, PhD; Rajiv Sharma, MD; Doncho Uzunov, PhD; Erminio Costa, MD

Background: Reelin (RELN) is a glycoprotein secreted preferentially by cortical γ-aminobutyric acid-ergic (GABAergic) interneurons (layers I and II) that binds to integrin receptors located on dendritic spines of pyramidal neurons or on GABAergic interneurons of layers III through V expressing the disabled-1 gene product (DAB1), a cytosolic adaptor protein that mediates RELN action. To replicate earlier findings that RELN and glutamic acid decarboxylase (GAD)₆₇, but not DAB1 expression, are down-regulated in schizophrenic brains, and to verify whether other psychiatric disorders express similar deficits, we analyzed, blind, an entirely new cohort of 60 postmortem brains, including equal numbers of patients matched for schizophrenia, unipolar depression, and bipolar disorder with nonpsychiatric subjects.

Methods: Reelin, GAD₆₅, GAD₆₇, DAB1, and neuron-specific–enolase messenger RNAs (mRNAs) and respective proteins were measured with quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) or Western blot analyses. Reelin-positive neurons were identified by immunohistochemistry using a monoclonal antibody.

Results: Prefrontal cortex and cerebellar expression of RELN mRNA, GAD₆₇ protein and mRNA, and prefrontal cortex RELN-positive cells was significantly decreased by 30% to 50% in patients with schizophrenia or bipolar disorder with psychosis, but not in those with unipolar depression without psychosis when compared with nonpsychiatric subjects. Group differences were absent for DAB1, GAD₆₅ and neuron-specific–enolase expression implying that RELN and GAD₆₇ down-regulations were unrelated to neuronal damage. Reelin and GAD₆₇ were also unrelated to postmortem intervals, dose, duration, or presence of antipsychotic medication.

Conclusions: The selective down-regulation of RELN and GAD₆₇ in prefrontal cortex of patients with schizophrenia and bipolar disorder who have psychosis is consistent with the hypothesis that these parameters are vulnerability factors in psychosis; this plus the loss of the correlation between these 2 parameters that exists in nonpsychotic subjects support the hypothesis that these changes may be liability factors underlying psychosis.

Arch Gen Psychiatry. 2000;57:1061-1069

CHZIZOPHRENIA is presumed to be a disorder of brain cortical function expressing a variable array of devastating psychiatric symptoms. Such florid symptoms contrast with comparatively modest anatomopathological alterations characterized by (1) dilation of cerebral ventricles; (2) reduction of cortical neuropil, resulting in an apparent increase in cell-packing density; (3) decrease in apical dendrite spine density on cortical pyramidal neurons; (4) important morphological (axon terminals of chandelier neurons) and neurochemical (decrease of glutamic acid decarboxylase₆₇ (GAD₆₇)) alterations of inhibitory γ-aminobutyric acid-ergic (GABAergic) interneurons.

The origin of such changes is unknown, but a few interesting models are emerging. One such model is the heterozygous reeler mice, which express 50% the amount of reelin (RELN) found in the brain of the wild-type mice, and exhibit the following: (1) the postpubertal appearance of sensory motor gating down-regulation reminiscent of that associated with psychosis, (2) a selective decrease of cortical neuropil expression associated with an apparent increase in cortical cell packing, (3) a selective decrease of nicotinamide adenine dinucleotide phosphate–positive GABAergic neurons in superficial white matter in the overlying cortex but an increase in the deeper white matter.

Reelin is a glycoprotein (3461 amino acids) displaying structural analogies with extracellular matrix proteins. During ontogenesis, the mammalian cerebral cortex lamination is regulated by RELN secreted...
SUBJECTS AND METHODS

SUBJECTS

Superior PFC gyrus, Brodmann area 9, and cerebellar hemisphere (cerebellum) specimens from 60 subjects obtained blind from the Stanley Foundation Brain Bank Neuropathology Consortium, Bethesda, Md, consist of 4 matched groups: 15 brains with schizophrenia (10 undifferentiated and 5 paranoid), 15 brains with bipolar disorder (11 with psychosis and 4 without psychosis), 15 brains with depression without psychotic features, and 15 control brains, free of psychiatric disorders before or at the time of death, and herein defined as nonpsychiatric subjects. Their psychiatric diagnosis was established by 2 senior psychiatrists, based on clinical and family history, using DSM-IV criteria. Demographic data are summarized in Table 1. Most patients with schizophrenia and patients with bipolar disorder with psychosis were receiving antipsychotic medication at the time of death. The total lifetime intake of antipsychotic medication was established in the absence of any specific loss of mRNA owing to neuronal damage. The analysis was limited to the mRNA and protein levels of the respective mRNAs. In the same samples we also measured neuron-specific–enolase (NSE) mRNA that was used as a marker to correct for nonspecific loss of mRNA owing to neuronal damage. The analyses of GAD65, GAD67, and NSE mRNAs was carried in only 6 samples per group because, only in these samples, there was a sufficient amount of mRNA available for the assay. The content of the DAB1 protein was determined only in a small sample chosen randomly from the PFC of all patients because the supply of specific anti-DAB1 antibody was limited.

The RNA quality of each brain sample was assessed by the Stanley Foundation Consortium by measuring glyceraldehyde or actin mRNA and then grading the yield: A (excellent), B (good), C (fair), D (poor), and F (very poor); only samples graded A to C were used. In each extract, the yield of RNA was established by absorbance at 260/280 nm. Samples with a ratio below 1.8 were rejected. In samples with abnormally low levels of RNA, possible major mRNA degradation was assessed using denaturing agarose gel electrophoresis and evaluating the sharpness of the 2 ribosomal RNA bands (28S and 18S). If these 2 bands were smeared, the sample was discarded.

The quantity of RELN mRNA was determined using internal standards as described. Primers for GAD65 mRNA were forward 1855 to 1878 base pairs (bp); reverse 2246 to 2269 bp (Gene Bank Accession No. M818883); internal standard contained a BglII restriction endonuclease, which on digestion generated fragments of 199 and 216 bp. Primers for GAD67 mRNA were forward 8 to 103 bp, and reverse 507 to 532 bp (Gene Bank Accession No. M72422); the internal standard contained an XbaI restriction endonuclease, which on digestion generated fragments of 215 and 235 bp. To establish whether neuronal RNA contributes equally to the total RNA pool, NSE mRNA was determined using the following primers forward 328 to 379 bp and reverse to 792 to 815 bp (Gene Bank Accession No. M22349); the internal standard contained a BamHI restriction endonuclease, which on digestion generated fragments of 199 and 220 bp.

For the determination of GAD65, GAD67, and DAB1 protein, we used Western blot analyses. Two to 3 aliquots of brain extracts (10-40 µg of protein) were resolved on acrylamide gel. The blots were developed with GAD65/GAD67 (Chemicon International, Temecula, Calif) or with DAB1-31 polyclonal antibody (1:1000) and subsequently with β-actin (1:5000) antiserum (Sigma, St Louis, Mo).

The levels of GAD65, GAD67, and DAB1 were calculated as a ratio of the optical density of the antibody of interest to the optical density of the antibody directed against β-actin. The reliability of duplicated blots for GAD65 and GAD67 was 0.85 and 0.95 for cortex and 0.92 and 0.95 for cerebellum, respectively (P<.001 for all comparisons).

STATISTICAL ANALYSES

Differences in the postmortem interval (in hours) between death and sample freezing, or between the right and left hemispheres, or in the clinical variables or in concomitant medications among diagnostic groups were evaluated with 1-way analysis of variance (ANOVA) or χ² analysis. Because background variables did not differ among diagnostic groups, statistical adjustment for these variables was not used. To test statistically whether there were effects of diagnosis on RELN mRNA or on GAD65, GAD67, DAB1 content, and on the density of RELN-positive cells, we used ANOVA. For GAD67 and GAD65, the values were analyzed using a randomized-block ANOVA with blots as the blocking variable. Multiple comparisons were conducted and we reported unadjusted P values. We have indicated in each table and text the Bonferroni adjusted α level and the rationale for its adjustment. Finally, Pearson correlations were determined between RELN mRNA, GAD65 protein, RELN-immunopositive neurons, and lifetime antipsychotic doses, and between RELN mRNA and GAD67. P values were 2 tailed.

Table 1

<table>
<thead>
<tr>
<th>Subject Category</th>
<th>Number of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia</td>
<td>15</td>
</tr>
<tr>
<td>Bipolar Disorder</td>
<td>15</td>
</tr>
<tr>
<td>Depression</td>
<td>15</td>
</tr>
<tr>
<td>Controls</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Protein</th>
<th>Strand 1</th>
<th>Strand 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELN</td>
<td>0.85</td>
<td>0.95</td>
</tr>
<tr>
<td>GAD65</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td>GAD67</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td>DAB1</td>
<td>0.85</td>
<td>0.95</td>
</tr>
</tbody>
</table>
from pioneer Cajal Retzius cells, located in the marginal zone. After birth in rats,11,12 or during the last months of gestation in primates,13 when the Cajal Retzius cells disappear, RELN is secreted by a select population of GABAergic interneurons including bitufted and horizontal cells of layers I and II of various cortical areas. Such secretion has been documented throughout life in rats11,12,14 and primates.15

In layers I and II of the cortex, the apical dendrites of glutamatergic pyramidal neurons, and in deeper layers (III-V), the dendrites and somata of basket, and chandelier, GABAergic interneurons may be surrounded by RELN immunoreactive halos.12,13 Some of these cells may also express RELN messenger RNA (mRNA).12 These RELN immunoreactive halos probably reflect RELN secreted into the extracellular matrix that binds to domains of integrin receptors including the α3 subunit,19 expressed on dendritic spines15 (Figure 1). The RELN–integrin-receptor interaction triggers an intracellular transduction cascade involving the cytosolic disabled-1 gene product (DAB1) that, in the phosphorylated state, functions as an adaptor protein,17,18 (Figure 1). In the phosphorylated state DAB1 can bind members of the soluble tyrosine kinase family and presumably can translocate them to various cellular compartments including the nucleus where these kinases may initiate transcription of specific genes operative in synaptic plasticity and in promoting cytoskeletal changes including synaptic spine maturation and their bifurcation associated with learning.10,22

Recent evidence places apolipoprotein E2 and very low-density-lipoprotein receptors in a common signaling pathway operative with integrin and DAB1 in the control of cell positioning during cortical embryonic development.23,24 However, since the knockout mice for either 1 of these 2 receptors fails to show phenotypic traits proper of the reeler mouse, further studies are needed before proposing that apolipoprotein E2 and very low-density lipoprotein receptors are operative in the cascade triggered by RELN in embryonic brain.

In a previous report we showed that RELN expression is down-regulated in GABAergic neurons of the prefrontal (Brodmann areas 10 and 46) temporal and parietal cortices, hippocampus, caudate nucleus, and glutamatergic cerebellar neurons of schizophrenia patients.7 In neocortex of the same patients, the expression of GAD67, the enzyme responsible for keeping cortical GABA levels at steady state,25,26 is also reduced.

Using 4 entirely new cohorts of postmortem brains comprising patients who were affected by schizophrenia, unipolar depression, or bipolar disorder, or were nonpsychiatric subjects,7 we have addressed the following questions:

1. Is brain down-regulation of RELN and GAD67 expression a specific feature of schizophrenia or is it found associated with other psychiatric disorders?
2. Is GAD67 and RELN down-regulation correlated with lifetime antidepressant dosages or with other demographic parameters?
3. Is RELN and GAD67 down-regulation associated with psychosis?
4. Are prefrontal cortex (PFC) expression levels of RELN and GAD67 correlated? Is this correlation altered in psychotic patients?

RESULTS

PREFRONTAL CORTEX

In patients with schizophrenia and those with bipolar disorder, but not in patients with unipolar depression without psychosis, the expression of GAD67 protein and RELN mRNA was decreased by about 50% when compared with...
nonpsychiatric subjects (Table 2). In psychiatric patients, GAD65 protein expression was virtually identical to nonpsychiatric subjects (Table 2). In Table 2 and Figure 2 we also show that in layer I of PFCs, the density of RELN-immunopositive neurons in schizophrenic patients or patients with bipolar disorder is decreased by 25% to 30% when compared with nonpsychiatric subjects, and this decrease occurs in the absence of a Nissl-positive neuron loss.

The cohort of patients with bipolar disorder can be subdivided into 2 subgroups: (1) those with psychosis (11 patients) and (2) those without psychosis (4 patients) (Table 1). Two pair-wise comparisons were of interest here: (1) patients with bipolar disorder with psychosis vs nonpsychiatric subjects and (2) patients with bipolar disorder without psychosis vs nonpsychiatric subjects; therefore, a Bonferroni-adjusted \(\alpha \) of 0.05/2 = 0.025 was used. Only the group with psychosis showed statistically significant down-regulations of PFC RELN and GAD65 expression (ANOVA: RELN mRNA, \(F_{2,27}=5.4, P = .01 \); RELN-positive neurons, \(F_{2,19}=21, P < .001 \); and GAD67, \(F_{2,27}=6.8, P = .004 \)). Pair-wise comparisons of bipolar patients with psychosis vs nonpsychiatric subjects yielded \(P \) values of .010 for RELN mRNA, \(P < .001 \) for RELN-positive cells, and .001 for GAD67 protein. Comparing these \(P \) values to the adjusted significance \(\alpha \) level of .025 indicates that patients with bipolar disorder with psychosis are significantly different from nonpsychiatric subjects for RELN mRNA and GAD67 protein expression levels.

In the PFC of 34 nonpsychotic subjects combined (15 nonpsychiatric subjects, 15 patients with unipolar depression, and 4 patients with bipolar disorder without psychosis), there was a significant correlation between expression levels of RELN mRNA and of GAD67 protein (Figure 3, left). These subjects also had a higher

Table 1. Demographic Characteristics of the Study Groupsa

<table>
<thead>
<tr>
<th></th>
<th>Nonpsychiatric Subjects (n = 15)</th>
<th>Unipolar Depressed (n = 15)</th>
<th>Schizophrenia (n = 15)</th>
<th>Bipolar Disorder (n = 15)</th>
<th>Statistical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/F ratio</td>
<td>9/6</td>
<td>9/6</td>
<td>9/6</td>
<td>9/6</td>
<td>(\chi^2 = 0.00, P = .99)</td>
</tr>
<tr>
<td>Age, y</td>
<td>48 ± 11</td>
<td>46 ± 9.3</td>
<td>44 ± 12</td>
<td>42 ± 13</td>
<td>(F_{1,15} = 0.39, P = .76)</td>
</tr>
<tr>
<td>Postmortem interval, h</td>
<td>24 ± 9.9</td>
<td>27 ± 4.7</td>
<td>34 ± 16</td>
<td>32 ± 15</td>
<td>(F_{1,15} = 1.7, P = .18)</td>
</tr>
<tr>
<td>Brain pH</td>
<td>6.3 ± 0.06</td>
<td>6.2 ± 0.09</td>
<td>6.2 ± 0.09</td>
<td>6.2 ± 0.09</td>
<td>(F_{1,15} = 0.6, P = .62)</td>
</tr>
<tr>
<td>Age of illness onset, y</td>
<td>NA</td>
<td>34 ± 13</td>
<td>23 ± 8.3</td>
<td>21 ± 7.9</td>
<td>(F_{1,14} = 6.6, P = .003)</td>
</tr>
<tr>
<td>Duration of illness, y</td>
<td>NA</td>
<td>13 ± 11</td>
<td>21 ± 11</td>
<td>23 ± 10</td>
<td>(F_{1,14} = 3.8, P = .03)</td>
</tr>
<tr>
<td>Cause of death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\chi^2 = 0.01)</td>
</tr>
<tr>
<td>Suicide</td>
<td>None</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>(\chi^2 = 11, P = .01)</td>
</tr>
<tr>
<td>Cardiopulmonary</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>Fisher exact test, (P < .001)</td>
</tr>
<tr>
<td>Accident</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Family history of psychosis</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>Fisher exact test, (P < .001)</td>
</tr>
<tr>
<td>Severe sociofunctional deficit</td>
<td>None</td>
<td>None</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Antipsychotic drug usea</td>
<td>None</td>
<td>None</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Clozapine only</td>
<td>None</td>
<td>None</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Othersb</td>
<td>None</td>
<td>None</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Clozapine/others</td>
<td>None</td>
<td>None</td>
<td>3</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Antidepressants</td>
<td>None</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>(\chi^2 = 13, P < .001)</td>
</tr>
<tr>
<td>Mood stabilizersc</td>
<td>None</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>Fisher exact test, (P = .004)</td>
</tr>
<tr>
<td>Abuse or dependenced</td>
<td>None</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Fisher exact test, (P = .49)</td>
</tr>
<tr>
<td>Alcohol</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Fisher exact test, (P = .99)</td>
</tr>
<tr>
<td>Cocaine</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Fisher exact test, (P = .99)</td>
</tr>
<tr>
<td>Polysubstance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(a \) Values are expressed as mean ± SD, unless otherwise indicated. NA indicates not applicable.
\(b \) This cohort includes 10 undifferentiated and 5 paranoid schizophrenic patients.
\(c \) This cohort includes 11 patients with psychosis and 4 patients without psychosis.
\(d \) One-way analysis of variance among patient cohorts.
\(e \) Analysis among patient cohorts.
\(f \) Lack of independent functioning in living, maintaining a job, or social activity.
\(g \) Antipsychotic drug present at the time of death.
\(h \) Only bipolar and schizophrenic patients received antipsychotic drugs. Fisher exact test between bipolar and schizophrenic illness was not significant; \(P = .15 \)
\(i \) Includes the following: haloperidol, chlorpromazine, risperidone, and thioridazine.
\(j \) Includes the following: valproate, carbamazepine, and lithium.
\(k \) Subjects with a history of recent alcohol or other drug abuse or dependence.
density of RELN-positive cells and exhibited a strong extracellular matrix halo of RELN immunostaining (Figure 2). In contrast, in the pool of 26 psychotic patients (15 with schizophrenia and 11 with bipolar disorders) (Figure 3, right), the expression levels of RELN mRNAs and GAD$_{67}$ protein were significantly decreased (RELN, $t_{17} = 3.8$ [unequal variance], $P < .001$; GAD$_{67}$, $t_{17} = 4.4$, $P < .001$), but the changes in these 2 variables were not correlated (Figure 3, right).

CEREBELLUM

In the cerebellum of the same patients with schizophrenia or bipolar disorder, we also found a decrease of GAD$_{67}$ protein expression (approximately 50%) without changes in GAD$_{65}$ when compared with nonpsychiatric subjects (Table 2). Reelin mRNA was also significantly decreased by about 38% in schizophrenic patients, but in patients with bipolar disorder a similar decrease (about 35%) failed to reach significance (Table 2). In contrast in patients with depression but without psychosis, neither RELN nor GAD$_{67}$ expression were down-regulated (Table 2).

DAB1 PROTEIN, GAD$_{65}$ AND GAD$_{67}$ mRNAs AND PROTEINS, AND NSE mRNA EXPRESSION

The expression of DAB1 was virtually identical in the PFC of all 4 groups (Table 2). We also compared the expression of GAD$_{67}$ or GAD$_{65}$ proteins with that of their respective mRNAs, in 6 PFC samples. Table 3 shows that GAD$_{67}$ mRNA expression is down-regulated in schizo-

Table 2. RELN- and Nissl-Positive Neurons, RELN mRNA, GAD$_{67}$, GAD$_{65}$, and DAB1 Protein Content in Prefrontal Cortex (PFC) Brodmann Area 9 and Cerebellum of Nonpsychiatric and Psychiatric Patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nonpsychiatric Subjects (n = 15)</th>
<th>Unipolar Depressed (n = 15)</th>
<th>Schizophrenia (n = 15)</th>
<th>Bipolar Disorder (n = 15)</th>
<th>Overall ANOVA</th>
<th>Schizophrenia vs Unipolar Depressed</th>
<th>Schizophrenia vs Bipolar Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELN-positive cell†</td>
<td>72 ± 7.2 (11)</td>
<td>76 ± 9.4 (10)</td>
<td>56 ± 11 (12)</td>
<td>52 ± 8.0 (11)</td>
<td>27</td>
<td>3.40 <.001</td>
<td><.001 vs <.001</td>
</tr>
<tr>
<td>Nissl-stained cell‡</td>
<td>134 ± 20 (11)</td>
<td>134 ± 20 (10)</td>
<td>132 ± 28 (12)</td>
<td>128 ± 19 (11)</td>
<td>0.3</td>
<td>3.40 NS</td>
<td><.001 vs <.001</td>
</tr>
<tr>
<td>RELN mRNA§</td>
<td>78 ± 34 (15)</td>
<td>74 ± 41 (13)</td>
<td>31 ± 20 (14)</td>
<td>41 ± 27 (15)</td>
<td>7.1</td>
<td>3.54 <.001</td>
<td><.001 vs .003</td>
</tr>
<tr>
<td>GAD$_{67}$ protein</td>
<td>1.1 ± 0.24 (15)</td>
<td>1.1 ± 0.70 (15)</td>
<td>0.51 ± 0.35 (15)</td>
<td>0.63 ± 0.45 (15)</td>
<td>6.4</td>
<td>3.56 <.001</td>
<td><.001 vs .001</td>
</tr>
<tr>
<td>GAD$_{65}$ protein</td>
<td>1.3 ± 0.40 (15)</td>
<td>1.5 ± 0.38 (15)</td>
<td>1.4 ± 0.54 (15)</td>
<td>1.3 ± 0.58 (15)</td>
<td>0.5</td>
<td>3.56 NS</td>
<td><.001 vs .001</td>
</tr>
<tr>
<td>DAB1 protein¶</td>
<td>1.0 ± 0.38 (6)</td>
<td>0.7 ± 0.47 (6)</td>
<td>1.1 ± 0.47 (6)</td>
<td>0.87 ± 0.39 (6)</td>
<td>0.8</td>
<td>3.20 NS</td>
<td><.001 vs .001</td>
</tr>
</tbody>
</table>

Cerebellum							
RELN mRNA§	1200 ± 390 (14)	1100 ± 500 (14)	750 ± 430 (14)	780 ± 440 (14)	3.8	3.51 .02	.008 vs .04
GAD$_{67}$ protein	1.2 ± 0.43 (15)	1.2 ± 0.32 (15)	0.54 ± 0.32 (15)	0.63 ± 0.29 (15)	15	3.56 <.001	<.001 vs <.001
GAD$_{65}$ protein	1.4 ± 0.42 (15)	1.4 ± 0.52 (15)	1.4 ± 0.60 (15)	1.2 ± 0.43 (15)	0.2	3.56 NS	<.001 vs <.001

*RELN indicates reelin; mRNA, messenger RNA; GAD, glutamic acid decarboxylase; DAB1, disabled-1 gene; ANOVA, analysis of variance; NS, not significant; and ellipses, not applicable. All values are expressed as mean ± SD (number of subjects per group).
†For multiple comparison, the P values are compared with a Bonferroni-adjusted $\alpha = 0.05/6 = 0.0083$. Multiple comparison tests with $P < .008$ was considered statistically significant.
‡The number (measured in square millimeters) of RELN-positive and Nissl-stained neurons in the PFC are referred to layer I because this layer contains most (approximately 95%) of the RELN-positive neurons (Figure 2). Reelin- and Nissl-positive cell studies were not carried out when cytoarchitecture was not preserved.
§Reelin mRNA equals attomoles per microgram of total RNA. Reelin mRNA determinations were not performed when RNA was degraded (See “Subjects and Methods” section).
¶DAB1 protein values are expressed as the optical density ratio with β-actin.
‖GAD$_{67}$, GAD$_{65}$, and DAB1 protein values were determined in 6 randomly chosen patients from each group (see “Subjects and Methods” section).
The expression of GAD67 and RELN proteins and mRNAs is down-regulated in PFC and to a lesser extent in the cerebellum of patients with schizophrenia or patients with bipolar disorder exhibiting severe psychotic symptoms. In contrast, in patients with unipolar or bipolar disorder or schizophrenic patients without psychosis, there was no significant or consistent correlation between total lifetime intake of antipsychotics, normalized as fluphenazine gram equivalent, and expression levels of RELN mRNA or GAD67 protein measured in PFC (RELN, \(r = 0.00, P = .82\); GAD67, \(r = 0.11, P = .59\)) or in cerebellum (RELN, \(r = 0.05, P = .81\); GAD67, \(r = 0.02, P = .92\)). We also evaluated the possible effect of antipsychotic medication at time of death classifying the groups as: no medication, clozapine therapy only, other antipsychotic medication at time of death classifying the groups as: no medication, clozapine therapy only, other antipsychotic medication at time of death, or these combined (Table 1). We found no effect of medication on RELN mRNA or GAD67 protein in any group.

Most schizophrenic patients or patients with bipolar disorder exhibiting severe psychotic symptoms had received antipsychotic medications (Table 1). However, in a combined group of patients, including both those with schizophrenia and those with bipolar disorder and psychosis, there was no significant or consistent correlation between total lifetime intake of antipsychotics, normalized as fluphenazine gram equivalent, and expression levels of RELN mRNA or GAD67 protein measured in PFC (RELN, \(r = 0.00, P = .82\); GAD67, \(r = 0.11, P = .59\)) or in cerebellum (RELN, \(r = 0.05, P = .81\); GAD67, \(r = 0.02, P = .92\)). We also evaluated the possible effect of antipsychotic medication at time of death classifying the groups as: no medication, clozapine therapy only, other antipsychotic drugs, or these combined (Table 1). We found no effect of medication on RELN mRNA or GAD67 protein. In patients never treated with antipsychotic drugs or who had received relatively small amounts of antipsychotic medication and were antipsychotic drug free for several years before death (Table 1), RELN mRNA and GAD67 protein expressions were virtually identical to the average levels detected in treated patients with bipolar disorder or patients with schizophrenia.

COMMENT

In our cohort only a few patients had a current history of alcohol or other substance abuse (Table 2).\(^{27}\) No statistically significant interaction exists between alcohol abuse or dependence and PFC or cerebellar RELN or GAD67 expression (PFC RELN, \(F_{2,51} = 0.1, P = .84;\) PFC GAD67, \(F_{2,51} = 0.1, P = .91;\) cerebellum RELN, \(F_{2,48} = 1.8, P = .18;\) cerebellum GAD67, \(F_{2,51} = 0.2, P = .79\)).

The levels of RELN mRNA and GAD67 protein in the PFC or cerebellum were virtually identical whether subjects with a history of alcohol abuse were included (Table 2) or excluded (ie, PFC RELN mRNA, patients with unipolar depression \(n = 10\), 77 ± 43; schizophrenic patients \(n = 12\), 33 ± 20; and patients with bipolar disorder \(n = 13\), 0.65 ± 0.46). Only a few patients (Table 1) had a history of psychoactive drug abuse; nevertheless, their levels of GAD67 protein and RELN mRNA were close to the average levels detected in drug-free patients with unipolar or bipolar disorder or schizophrenic patients.

Brain, blood, and urine were screened for alcohol and other substance abuse (see “Subjects and Methods” section). In the patients with depression, 3 patients with a current history of alcohol abuse had detectable blood alcohol levels (0.2-0.6 g/dL), and 1 patient with a history of cocaine abuse had a high level of cocaine and a benzodiazepine. In the group with bipolar disorder, 1 patient with a history of methadone abuse and 1 patient with a history of cocaine abuse were positive for methadone and cocaine, respectively. In the schizophrenic group, 1 patient without a history of drug abuse was positive for morphine and codeine, and 1 patient also without a history of drug abuse was positive for ketamine. In all groups, the other patients were free of other substance abuse or alcohol. All nonpsychiatric subjects were free of substances of abuse, except for 1 subject with a blood alcohol level of 0.06 g/dL. Importantly, the toxicology parameters were not correlated with changes of RELN or GAD67 expression in any group.

DEMOGRAPHIC VARIABLES AND ANTIPSYCHOTIC MEDICATION

The average values of postmortem interval and other demographic variables (sex, age at death, cause of death, or pH of brain) were similar in all 4 subject groups (Table 1). Pearson correlations of postmortem interval to RELN, GAD67, and GAD65 in PFC and cerebellum in all 4 groups \((r = 0.10, 0.06, 0.18\) for PFC and 0.06, 0.22, and 0.02 for cerebellum) or for each diagnostic group, all nonsignificant, and the correlations between the above parameters and age at death, or age at disease onset or duration, or cause of death, or brain pH were virtually 0. Moreover, there were no significant sex differences in RELN mRNA, in GAD67 or GAD65 protein levels, or in the number of RELN-positive cells in the PFC.

In view of the known anatomical and physiological differences between the 2 brain hemispheres, we also evaluated whether there were any differences in the levels of RELN mRNA and GAD65 protein between the right (8 samples in each cohort) and the left (7 samples in each cohort) hemispheres. No overall left vs right difference was observed, and the decreases in these 2 variables were similar in schizophrenic patients and in patients with bipolar disorder when compared with nonpsychiatric patients or patients with psychosis.

In our cohort only a few patients had a current history of alcohol or other substance abuse (Table 2).\(^{27}\) No statistically significant interaction exists between alcohol abuse or dependence and PFC or cerebellar RELN or GAD65 expression (PFC RELN, \(F_{2,51} = 0.1, P = .84;\) PFC GAD65, \(F_{2,51} = 0.1, P = .91;\) cerebellum RELN, \(F_{2,48} = 1.8, P = .18;\) cerebellum GAD65, \(F_{2,51} = 0.2, P = .79\)).

The levels of RELN mRNA and GAD67 protein in the PFC or cerebellum were virtually identical whether subjects with a history of alcohol abuse were included (Table 2) or excluded (ie, PFC RELN mRNA, patients with unipolar depression \(n = 10\), 77 ± 43; schizophrenic patients \(n = 12\), 33 ± 20; and patients with bipolar disorder \(n = 13\), 0.65 ± 0.46). Only a few patients (Table 1) had a history of psychoactive drug abuse; nevertheless, their levels of GAD67 protein and RELN mRNA were close to the average levels detected in drug-free patients with unipolar or bipolar disorder or schizophrenic patients.

Brain, blood, and urine were screened for alcohol and other substance abuse (see “Subjects and Methods” section). In the patients with depression, 3 patients with a current history of alcohol abuse had detectable blood alcohol levels (0.2-0.6 g/dL), and 1 patient with a history of cocaine abuse had a high level of cocaine and a benzodiazepine. In the group with bipolar disorder, 1 patient with a history of methadone abuse and 1 patient with a history of cocaine abuse were positive for methadone and cocaine, respectively. In the schizophrenic group, 1 patient without a history of drug abuse was positive for morphine and codeine, and 1 patient also without a history of drug abuse was positive for ketamine. In all groups, the other patients were free of other substance abuse or alcohol. All nonpsychiatric subjects were free of substances of abuse, except for 1 subject with a blood alcohol level of 0.06 g/dL. Importantly, the toxicology parameters were not correlated with changes of RELN or GAD67 expression in any group.

Most schizophrenic patients or patients with bipolar disorder exhibiting severe psychotic symptoms had received antipsychotic medications (Table 1). However, in a combined group of patients, including both those with schizophrenia and those with bipolar disorder and psychosis, there was no significant or consistent correlation between total lifetime intake of antipsychotics, normalized as fluphenazine gram equivalent, and expression levels of RELN mRNA or GAD67 protein measured in PFC (RELN, \(r = 0.05, P = .82\); GAD67, \(r = 0.11, P = .59\)) or in cerebellum (RELN, \(r = 0.05, P = .81\); GAD67, \(r = 0.02, P = .92\)). We also evaluated the possible effect of antipsychotic medication at time of death classifying the groups as: no medication, clozapine therapy only, other antipsychotic drugs, or these combined (Table 1). We found no effect of medication on RELN mRNA or GAD67 protein. In patients never treated with antipsychotic drugs or who had received relatively small amounts of antipsychotic medication and were antipsychotic drug free for several years before death (Table 1), RELN mRNA and GAD67 protein expressions were virtually identical to the average levels detected in treated patients with bipolar disorder or patients with schizophrenia.
with unipolar disorder and depression, but without psychosis, the expression of these 2 variables is virtually identical to that of nonpsychiatric subjects.

Patients with bipolar disorder and psychosis share severe sociofunctional deficits with schizophrenic patients (Table 1), including the auditorygating deficit, and like schizophrenic patients, they often receive antipsychotic medication. In a combined group of patients including both those with schizophrenia and patients with bipolar disorder and psychosis, no sign of correlation was noted between the levels of GAD67 protein and RELN mRNA expression with the lifetime dosages of antipsychotic medication. Even psychotic patients who had never received antipsychotic treatment evidenced GAD67 protein and RELN mRNA down-regulation.

A protracted haloperidol treatment of rats failed to change RELN mRNA content in cortex and cerebellum and, in a recent study, it was shown that protracted haloperidol treatment failed to change the expression of GAD67 mRNA in the PFC of nonhuman primates. We have reported previously that in rats the turnover rate of GABAergic neurons to be horizontal and bitufted GABAergic interneurons. Collectively, these data suggest that the down-regulation of RELN and GAD67 is independent from haloperidol treatment, although a more extensive study including other typical or atypical neuroleptics would be desirable.

Statistical analyses of these data exclude a relevance of differences in postmortem interval, age, sex, cause of death, or any other demographic variable. Moreover, the amnestic and toxicology data indicate that there is not a statistically significant interaction between the abuse of alcohol or other illicit substances and PFC or cerebellar RELN or GAD67 expression.

The RELN and GAD67 down-regulation observed in schizophrenic patients or patients with bipolar disorder and psychosis seems to be selective and not dependent on neuronal loss because in the same brains other proteins or mRNAs, including GAD65 and DAB1, are equal to that of nonpsychiatric subjects. Moreover, a decrease of GAD67 and RELN, but not GAD65 mRNA expression, can be observed also when the measurements are calculated with reference to mRNA encoding for NSE, a specific neuronal marker. In fact, if the down-regulation of GAD67 protein and RELN expression were due to a decrease in neurons, these changes should not occur if measured against NSE mRNA.

The RELN-immunopositive neurons in PFC (layers I and II) appear small and ovoid. Experiments in rats and nonhuman primates have identified these neurons to be horizontal and bitufted GABAergic interneurons.

The density of RELN-immunopositive neurons in schizophrenic patients or patients with bipolar disorder and psychosis is lower (25%-30%) than in patients with unipolar depression or in nonpsychiatric subjects. This decrease appears to be smaller than that of RELN mRNA expression (40%-50%) (Table 2) and RELN protein. This apparent discrepancy may be related to the presence of extracellular RELN bound with high affinity to specific receptors (ie, integrins), which is reflected by RELN mRNA and Western blot measurements, but not by the cell count. Hence, such a discrepancy was expected because RELN immunoreactive extracellular halos were considerably reduced in histological preparations of schizophrenic patients and patients with bipolar disorder and psychosis.

Cerebellar RELN mRNA is almost exclusively expressed in glutamatergic granule neurons. If the decrease of cerebellar RELN mRNA found in schizophrenic patients were to be a consequence of a substantial decrease in the number of these neurons, the size of the cerebellum in schizophrenic patients should be proportionally decreased, because the cerebellar mass to a large extent is influenced by the number of granule neurons. However, no gross alterations of the cerebellar size or shape were observed in the patient cohorts (E. Fuller-Torrey, MD, oral communication, 2000).

Based on the selective down-regulation of RELN and GAD67 expression in the brain of both schizophrenic pa-
tients with bipolar disorder and patients with psychosis, we hypothesize that RELN and GAD67 down-regulations may be liability factors that play a role in psychosis vulnerability. Since such a hypothesis may cut across classic boundaries of psychiatric diagnosis,3,4 before accepting this conclusion, we need to study a substantial number of patients with unipolar depression and psychosis and a larger group of patients with bipolar disorder without psychosis, to test statistically this hypothesis. Also, in these 2 groups, we need to have a substantial group of psychotic patients who were never treated. Finally, we need to extend these findings to a greater number of cortical, hippocampal, and corpus striatum structures.

Our findings on GAD67 expression are in keeping with the study of Akbarian et al,5 and Volk et al6 who also showed by in situ hybridization in the superior frontal gyrus (Brodmann area 9) of schizophrenic patients, a decrease of GAD67 mRNA expression but no differences in the total number of neurons.

To interpret the nature of GAD67 expression down-regulation and the functional link between GAD67 and RELN, we hypothesize that the GABAergic neurons of layers I and II of the PFC, by a constitutive process,33 secrete RELN into the extracellular matrix, which, in turn, may bind to integrin receptors expressed by basket and chandelier cells. Most of these interneurons whose cell bodies reside in layers III through V do not express RELN,5,12 but presumably express DAB1,7,11 which in response to a RELN-initiated signaling cascade (Figure 1), selectively regulates GAD67, but not GAD65 mRNA expression. When RELN is down-regulated (as in the brain of schizophrenic patients and patients with bipolar disorder and psychosis), the DAB1-dependent regulation of protein synthesis declines perhaps leading to the down-regulation and psychosis), the DAB1-dependent regulation of protein synthesis declines perhaps leading to the down-regulation of RELN mRNA and protein in several structures—PFC, temporal and limbic cortices, striatum, and cerebellum—of psychotic patients in the absence of a detectable loss of neurons found in this and in previous studies5,8 suggests that a genetic RELN mRNA down-regulation (owing to haploinsufficiency or to a dysfunction of the RELN promoter) or an epigenetic (gestational or postgestational viral, hypoxic, or excitotoxic) event may, in part, be responsible for the GAD67 down-regulation and perhaps for the neuropsychological reported by Seiden and Goldman-Rakic2 in PFC of schizophrenic patients.

Accepted for publication April 19, 2000.

This study was supported in part by a grant from the Stanley Foundation (Drs. Guidotti, Davis, and Costa) and ROI-MH62188 from National Institute of Mental Health, National Institutes of Health (Dr. Guidotti), Bethesda, Md.

Postmortem brain specimens were donated by the Stanley Foundation and Neuropathology Consortium Brain Bank, Bethesda, courtesy of Llewellyn B. Bigelow, MD, Juraj Cervenah, MD, Mary M. Herman, MD, Thomas M. Hyde, MD, Joel E. Kleiman, MD, Michael B. Knable, MD, Jose D. Pat-

Welcome, Joe!

I am delighted to welcome Joseph T. Coyle, MD, as the fourth editor of *Archives of General Psychiatry*. Dr Coyle is the Eben S. Draper Professor of Psychiatry and Neuroscience at Harvard Medical School. He is an internationally renowned and respected scientist, educator, and clinician who will add substantially to our team of *JAMA* and *ARCHIVES* editors. We look to Joe to carry on the great tradition of Daniel X. Freedman, MD, a mentor of Dr Coyle’s, and the other former editors of the journal.

I also wish to publicly express my gratitude to Richard M. Glass, MD, who has served as interim editor for the past 3 months. We are happy to have him back full-time as deputy editor of *JAMA*.

Watch for great things to happen with *Archives of General Psychiatry* under Joe’s leadership.

*Catherine D. DeAngelis, MD, MPH
Editor-in-Chief, Scientific Publications & Multimedia Applications
Editor, *JAMA*

Correction

Misspelling of an Author’s Surname. In the byline of the article titled “Decrease in Reelin and Glutamic Acid Decarboxylase (GAD67) Expression in Schizophrenia and Bipolar Disorder,” published in the November 2000 issue of the *ARCHIVES* (2000;57:1061-1069), the fourth author’s full name should have read Valeria Di-Giorgi-Gerevini, PhD. The journal regrets the error.