A Family Study of Alzheimer Disease and Early- and Late-Onset Depression in Elderly Patients

Reinhard Heun, MD; Andreas Papassotiropoulos, MD; Frank Jessen, MD; Wolfgang Maier, MD; John C. S. Breitner, MD

Background: The substantial symptomatic overlap between depression and dementia in old age may be explained by common genetic vulnerability factors.

Methods: We investigated this idea by comparing the occurrence of both disorders in first-degree relatives of 78 patients with Alzheimer disease (AD), of 74 with late-onset depression (onset age of ≥60 years), of 78 with early-onset depression, of 53 with comorbid lifetime diagnoses of AD/depression, and of 162 population control subjects. Diagnostic information on their 3002 relatives was obtained from structured direct assessments and from family history interviews.

Results: The 90-year lifetime incidence of primary progressive dementia was significantly higher in relatives of patients with AD (30%) and comorbid AD/depression (27%) than in relatives of patients with early-onset (21%) or late-onset (26%) depression, or of controls (22%) (P = .01). Lifetime incidence of depression was significantly higher in relatives of patients with early-onset depression (13%) than in relatives of patients with AD (10%) or controls (9.0%) (P = .006). Lifetime incidence of depression was similar in control relatives and in relatives of those patients with comorbid AD/depression (8.6%). Relatives of patients with late-onset depression also showed similar occurrence of depression until the age of 80 years, but the figure increased sharply thereafter to 19.1% by the age of 90 years.

Conclusions: Primary progressive dementia and early-onset depression represent clinical entities with distinct inheritance. Late-onset depression does not share substantial inheritance in common with dementia or with early-onset depression, but does show modest familial clustering.

Arch Gen Psychiatry. 2001;58:190-196
PATIENTS AND METHODS

RECRUITMENT OF PATIENTS, CONTROLS, AND THEIR FIRST-DEGREE RELATIVES

Between January 1, 1992, and October 31, 1995, and between January 1, 1996, and December 31, 1998, we recruited in sequence patients aged 60 years or older from the clinics of the University of Bonn, Bonn, and the University of Mainz, Mainz, Germany, respectively. The resulting patient sample included 78 with AD, 78 with EOD, 74 with LOD (onset age of ≥60 years), and 53 with AD/depression (comorbid patients). In the same years, we recruited 162 control subjects who were group matched to the patient sample on age, sex, and educational background. With the support of the cities' census agencies, we used a weighted, stratified, systematic sampling approach to select matched controls at random from the inhabitants' registers of the 2 communities (Table). We contacted the control subjects by mail or, if they did not respond, by telephone to administer a personal interview. The patients and controls were asked to provide names and addresses for all first-degree relatives. All procedures involving contact with human subjects were approved by the relevant local ethics committees, and informed consent was obtained for each stage of direct contact. We also asked the relatives whom we interviewed to obtain assent from their unavailable family members for their inclusion in the analyses.

Because PPD is rare before the age of 50 years (in 1775 relatives aged <50 years, only 1 showed PPD), we required that all patients and controls have at least one first-degree relative aged 50 years or older available for interview. Among eligible patients, the participation rate was then 87%. With prior information on the availability of control relatives, we could not calculate a comparable participation rate among eligible controls. Nonparticipant patients were broadly similar to participants on age, sex, and marital status, but had slightly higher educational attainment. Educational background was similar, however, for each group of patients and controls. As expected, patients with EOD were slightly younger than the other groups (Table). Given the high prevalence of many mental disorders, several investigators have noted that the use of disease-free controls can artificially inflate distinctions in case-control comparisons. Others have, therefore, proposed that selected (disease-free) and unselected controls should be used, but this approach creates additional statistical comparisons. Because we were interested in comparing risks in various relative groups vs the general population, we followed the conservative practice of not requiring that controls be disease free. An unselected general population control panel also enabled the use of a single large group of control relatives for all comparisons. Accordingly, our 162 control individuals included 22 with dementia, 8 with EOD, and 9 with past or current LOD.

FIRST-DEGREE RELATIVES

Two first-degree relatives asked not to be included in the study, and their data were consequently excluded from analysis. The 445 study probands then had 3002 first-degree relatives (Table). We could not learn whether 210 (7.0%) of these relatives were living or dead but assumed that many were long deceased or lost to follow-up, probably as a result of wartime conditions. Of the remaining 2792 relatives, 1236 (44.3%) were deceased (Table). We succeeded in interviewing 775 (49.8%) of the remainder. Living relatives of probands with EOD were somewhat younger, while educational attainment was slightly lower among interviewed relatives of patients with LOD (Table). We interviewed a higher proportion of female than male relatives (52.7% vs 43.5%; \(\chi^2 = 14.2; P < .001 \)), but there were no important differences in sex composition of the various relative groups. Ostensibly psychiatically ill relatives of control subjects (but not of patients) were less available for interview than their healthy counterparts. To prevent an awareness bias when comparing relatives of patients and controls, we, therefore, included source of information (interview vs family history information only) as a covariate in the survival analyses. We also made separate comparisons using interviewed and unavailable relatives and obtained identical results.

DIAGNOSTIC ASSESSMENT

The clinical examination of the patients consisted of personal and family histories, neurological and medical assessments, an extensive laboratory workup, electroencephalography, computed tomography or magnetic resonance imaging, and other tests if indicated. The patients, controls, and their available first-degree relatives were

Continued on next page

Few studies have examined the familial aggregation of AD and depression simultaneously. The available studies have often shown increased occurrence of depression and other psychiatric disorders among the relatives of patients with AD, and vice versa. Two groups reported an increase in depression among relatives of probands with AD, specifically when the latter had comorbid depression. Another study confirmed this finding only for female probands with AD. Important limitations of these studies, and probable reasons for their inconsistent results, may be their limited size (in most instances) and their investigation of only 1 or 2 disorders in patients or their relatives. Most studies also used the family history method rather than more precise family study methods, in which ill relatives are directly examined.

To our knowledge, we undertook the first family study of PPD and depressive syndromes among relatives of probands with AD, EOD, and LOD, among relatives of patients with comorbid AD/depression, and among relatives of matched population controls. We investigated the following hypotheses:

1. Alzheimer disease and EOD have different genetic antecedents and, therefore, different patterns of familial aggregation. Accordingly, relatives of probands with AD will have higher loads of PPD than relatives of patients with EOD or controls. Relatives of probands with EOD will show more depression than relatives of patients with AD or controls.

2. Late-onset depression belongs to the broad spectrum of depressive disorders. Therefore, relatives of
RESULTS

PPD IN RELATIVES

Figure 1 presents Kaplan-Meier curves of estimated PPD-free survival among relatives of the various patient and control groups. Proportional hazards regression analysis revealed significant differences in disease-free survival among relatives of the different proband groups (Wald $\chi^2 = 17.0; P = .002$). Risks were increased in relatives of patients with AD and of patients with comorbid AD/depression compared with control relatives (HR, 2.38 [$P < .001$] and 2.06 [$P = .01$], respectively). Sex had no significant influence on the risk of PPD ($\chi^2 = 1.86; P = .17$).

Direct interviewing increased the chance of detecting PPD...
compared with family history information (HR, 2.3; $P<.001$), but this effect disappeared if an interaction term including source of data and sex was used. This term indicated that direct interview diagnoses of PPD were more sensitive than family history diagnoses in women (HR, 2.3; $P<.001$), but this effect disappeared if an interaction term between proband diagnosis significantly influenced relatives’ risk of depression (Wald $\chi^2 = 14.5; P = .006$). For relatives of patients with EOD vs control relatives, the HR was 1.64 ($P = .04$), whereas for relatives of patients with AD, the HR was 0.57 ($P = .05$). Relatives of probands with LOD and with comorbid AD/depression showed risks of depression similar to control relatives ($\chi^2 = 0.88$ and 0.01, respectively; $P = .34$). Female relatives showed more depression than male relatives (HR, 1.93; $P<.001$). Directly interviewed relatives also showed an apparently increased risk vs those assessed only by family history information (HR, 2.2; $P<.001$), but this effect did not vary substantially across proband groups. A significant interaction between sex and source of data ($\chi^2 = 7.33; P = .007$) suggested that the difference in depression between female and male relatives was greater in relatives assessed by family history than in those who were interviewed (HR, 2.13 [$P = .008$] and 1.32 [$P = .07$], respectively). Interaction terms between proband diag-

Description of 445 Patients and Control Subjects and 2792 First-Degree Relatives by Diagnoses of Patients and Controls

Table: Patients’ Diagnoses

<table>
<thead>
<tr>
<th>Variable</th>
<th>AD</th>
<th>AD/Depression</th>
<th>Early-Onset Depression†</th>
<th>Late-Onset Depression‡</th>
<th>Control Subjects</th>
<th>Group Comparison (ANOVA or Pearson χ^2 Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject group</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>...</td>
</tr>
<tr>
<td>No. of Subjects</td>
<td>78</td>
<td>53</td>
<td>78</td>
<td>74</td>
<td>162</td>
<td>...</td>
</tr>
<tr>
<td>Age, y</td>
<td>75 ± 9</td>
<td>73 ± 9</td>
<td>66 ± 7</td>
<td>72 ± 8</td>
<td>73 ± 11</td>
<td>$F_1 = 11.0, P < .001; C < A, B, D, and E§</td>
</tr>
<tr>
<td>Female sex, %</td>
<td>74</td>
<td>66</td>
<td>71</td>
<td>70</td>
<td>61</td>
<td>$\chi^2_1 = 5.3, P = .02$</td>
</tr>
<tr>
<td>Education, y</td>
<td>9.9 ± 2.0</td>
<td>9.3 ± 2.2</td>
<td>9.8 ± 2.0</td>
<td>9.2 ± 2.1</td>
<td>9.5 ± 2.0</td>
<td>$F_1 = 0.6, P = .65$</td>
</tr>
<tr>
<td>First-degree relatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total No.</td>
<td>557</td>
<td>392</td>
<td>487</td>
<td>500</td>
<td>1066</td>
<td>...</td>
</tr>
<tr>
<td>No. with known age or age of death</td>
<td>520</td>
<td>347</td>
<td>465</td>
<td>440</td>
<td>1020</td>
<td>...</td>
</tr>
<tr>
<td>Age, y</td>
<td>60 ± 20</td>
<td>59 ± 19</td>
<td>56 ± 20</td>
<td>58 ± 20</td>
<td>58 ± 20</td>
<td>$F_1 = 2.6, P = .03; C < A§</td>
</tr>
<tr>
<td>Female sex, %</td>
<td>51</td>
<td>48</td>
<td>50</td>
<td>45</td>
<td>51</td>
<td>$\chi^2_1 = 4.3, P = .05$</td>
</tr>
<tr>
<td>Deceased</td>
<td>252</td>
<td>164</td>
<td>183</td>
<td>192</td>
<td>445</td>
<td>...</td>
</tr>
<tr>
<td>Age, y</td>
<td>65 ± 22</td>
<td>63 ± 20</td>
<td>67 ± 19</td>
<td>66 ± 21</td>
<td>66 ± 22</td>
<td>$F_1 = 0.8, P = .52$</td>
</tr>
<tr>
<td>Female sex, %</td>
<td>47</td>
<td>45</td>
<td>45</td>
<td>44</td>
<td>45</td>
<td>$\chi^2_1 = 0.4, P = .99$</td>
</tr>
<tr>
<td>Living</td>
<td>268</td>
<td>183</td>
<td>282</td>
<td>248</td>
<td>575</td>
<td>...</td>
</tr>
<tr>
<td>Age, y</td>
<td>56 ± 17</td>
<td>55 ± 17</td>
<td>49 ± 18</td>
<td>52 ± 17</td>
<td>53 ± 17</td>
<td>$F_1 = 5.9, P < .001; C < A, B, and C§</td>
</tr>
<tr>
<td>Female sex, %</td>
<td>56</td>
<td>54</td>
<td>55</td>
<td>46</td>
<td>45</td>
<td>$\chi^2_1 = 7.4, P = .04$</td>
</tr>
<tr>
<td>Interviewed</td>
<td>143</td>
<td>97</td>
<td>148</td>
<td>144</td>
<td>243</td>
<td>...</td>
</tr>
<tr>
<td>Age, y</td>
<td>55 ± 15</td>
<td>54 ± 17</td>
<td>49 ± 17</td>
<td>52 ± 16</td>
<td>51 ± 16</td>
<td>$F_1 = 3.4, P = .009; C < A§</td>
</tr>
<tr>
<td>Female sex, %</td>
<td>58</td>
<td>56</td>
<td>60</td>
<td>51</td>
<td>63</td>
<td>$\chi^2_1 = 5.6, P = .02$</td>
</tr>
<tr>
<td>Education, y</td>
<td>10.2 ± 2.3</td>
<td>11.0 ± 2.5</td>
<td>10.1 ± 2.1</td>
<td>9.9 ± 2.4</td>
<td>10.6 ± 2.4</td>
<td>$F_1 = 3.1, P = .02$</td>
</tr>
<tr>
<td>Unavailable but living</td>
<td>125</td>
<td>86</td>
<td>134</td>
<td>104</td>
<td>332</td>
<td>...</td>
</tr>
<tr>
<td>Age, y</td>
<td>57 ± 18</td>
<td>56 ± 17</td>
<td>50 ± 19</td>
<td>52 ± 17</td>
<td>54 ± 18</td>
<td>$F_1 = 1.0, P = .43$</td>
</tr>
<tr>
<td>Female sex, y%</td>
<td>54</td>
<td>51</td>
<td>49</td>
<td>39</td>
<td>50</td>
<td>$\chi^2_1 = 5.8, P = .22$</td>
</tr>
</tbody>
</table>

* Data are given as the mean ± SD unless otherwise indicated. ANOVA indicates analysis of variance; AD, Alzheimer disease; and ellipses, data not applicable.
† Age at onset is 60 years or younger.
‡ Age at onset is older than 60 years.
§ Post hoc comparisons: $P < .05$ (Scheffé test, Bonferroni corrected).
‖ Time in school.
¶ Post hoc comparisons: no significant group differences ($P > .10$; Scheffé test, Bonferroni corrected).

DEPRESSION IN RELATIVES

Figure 2 shows Kaplan-Meier curves for depression-free survival by relatives of patients and controls. Cox proportional hazards regression analysis again revealed that proband diagnosis significantly influenced relatives’ risk of depression ($Wald \chi^2 = 14.5; P = .006$). For relatives of patients with EOD vs control relatives, the HR was 1.64 ($P = .04$), whereas for relatives of patients with AD, the HR was 0.57 ($P = .05$). Relatives of probands with LOD and with comorbid AD/depression showed risks of depression similar to control relatives ($\chi^2 = 0.88$ and 0.01, respectively; $P = .34$). Female relatives showed more depression than male relatives (HR, 1.93; $P < .001$). Directly interviewed relatives also showed an apparently increased risk vs those assessed only by family history information (HR, 2.2; $P < .001$), but this effect did not vary substantially across proband groups. A significant interaction between sex and source of data ($\chi^2 = 7.33; P = .007$) suggested that the difference in depression between female and male relatives was greater in relatives assessed by family history than in those who were interviewed (HR, 2.13 [$P = .008$] and 1.32 [$P = .07$], respectively). Interaction terms between proband diag-

©2001 American Medical Association. All rights reserved.
Primary progressive dementia (PPD)–free survival up to the age of 90 years in first-degree relatives with known age or age of death by lifetime diagnosis of patients and control subjects, ie, in 520 relatives of 78 subjects with Alzheimer disease (AD), in 347 relatives of 53 subjects with comorbid AD/depression, in 465 relatives of 78 subjects with early-onset depression, in 440 relatives of 74 subjects with late-onset depression, and in 1020 relatives of 162 controls.

COMMENT

In keeping with our first hypothesis, we found an increased risk of PPD in the relatives of patients with AD and of patients with comorbid AD/depression, compared with relatives of controls, but no such increase in relatives of probands with EOD. The observed familial aggregation of PPD is in full agreement with several earlier studies.12-14,16-20 Like several other family studies on EOD,21-24 we also found increased risk of depression in relatives of probands with EOD vs relatives of controls, but there was no such effect in relatives of patients with AD. These results suggest that AD and EOD are psychiatric disorders that share few, if any, common genetic antecedents.

In contrast with Maier and colleagues,25 and in contrast with predictions of our second and third hypotheses, we found that probands with LOD did not show significant familial loading of either depression or PPD when compared with controls. Their relatives’ occurrence of depression tended to be lower than in relatives of patients with EOD, and their load of PPD was substantially lower than in relatives of patients with AD. These results do not support the notion that LOD shares familial factors with either AD or EOD. There is, nevertheless, a slight but significant increase in the loading of LOD in the relatives of probands with LOD that is evident after the age of 80 years. These findings suggest that unique familial factors may predispose to the development of LOD.

Our fourth hypothesis was confirmed only in part, in that patients with comorbid AD/depression showed familial loading of PPD similar to that in patients with uncomplicated AD, but they showed no substantial increase in familial risk of depression.

The reduced risk of depression in relatives of patients with AD compared with relatives of controls was unexpected. This difference persisted when we restricted the control group to those free of disease. We conjecture that some protective factor(s) might reduce the risk of depression in these relatives of probands with AD or, alternatively, that our patients with AD and without comorbid depression might represent individuals selected for the absence of familial risk factors for depression and sex, or between diagnosis and source of data, were not statistically significant (χ²=8.6 [P=.07] and 6.8 [P=.14], respectively).

Mantel-Haenszel statistics supported these results. The familial load of depression differed significantly by proband diagnoses (log-rank χ²=14.5; P=.006). Relatives of patients with EOD showed the most depression compared with relatives of patients with AD and controls (log-rank χ²=14.1 and 6.30, respectively; P=.01). However, comparisons of relatives of probands with EOD vs LOD or comorbid AD/depression were inconclusive (log-rank χ²=1.41 [P=.23] and 2.45 [P=.12], respectively). Relatives of probands with AD showed the lowest occurrence of depression (log-rank tests: AD vs controls, χ²=3.36, P=.07; AD vs EOD, χ²=14.1, P<.001; AD vs LOD, χ²=6.72, P=.01; and AD vs comorbid AD/depression, χ²=3.42, P=.06). Patients with LOD, comorbid AD/depression, and controls did not differ in their familial loads of depression (LOD vs controls, χ²=1.12, P=.29; comorbid patients vs controls, χ²=0.06, P=.81; and LOD vs comorbid AD/depression, χ²=0.35, P=.55). However, relatives of patients with LOD showed a small, but significant, increase in LOD after the age of 80 years. Of 84 relatives of patients with LOD, 4 (4%) developed depression after this age, as contrasted with 2 (2%) of 85 relatives of persons with AD, 1 (2%) of 65 such relatives of persons with EOD, and 0 of the 143 control relatives and the 51 relatives of probands with comorbid AD/depression (χ²=11.5; P=.02).
sion. We favor the latter interpretation because it is consistent with several family studies showing an increased risk of depression in relatives of subjects with comorbid AD/depression compared with relatives of patients with uncomplicated AD. The similar observed risks of depression in relatives of patients with comorbid AD/depression and of controls might reflect the limited effect of familial factors on relatives’ risk of depression, rendering difficult their detection in a comparison with population controls.

Selection bias and awareness bias are potential problems in this work, as in all family studies. We succeeded in administering a direct interview to only 775 of 3002 relatives, representing 49.8% of those living and 25.8% of the entire sample. Our observed proportion of missing data (210 relatives, or 7.0%) would be unlikely to bear substantially on results of survival analyses. To examine possible differences in the reported occurrence of illness in direct interview vs family history data, we compared results in a subsample of the first 531 relatives studied. Except for the relatives of controls, we saw little effect of proband’s diagnostic group on relatives’ availability for direct interview. Consequently, and because the relatives’ groups had comparable demographic characteristics, we doubt that differential participation had any undue influence on comparisons of disorders in the different relative groups.

The variables that affected the validity of diagnoses that relied on family history were disorder in the informant, age, and sex. Accordingly, we deleted information provided by deceased informants to prevent spurious familial aggregation. Differences in the age distribution of relatives were intrinsically considered through the use of survival analysis, while sex and the source of information were controlled by including them as covariates. All analyses, including those stratified by source of information (direct interview vs family history) and the use of a design that compared several groups of relatives (not only specific proband vs control relatives), led to consistent results. We are, therefore, confident that our findings are valid.

Our a priori power calculations relied on earlier studies that had compared familial loads of dementia in patients with AD and controls, and of depression in probands with EOD and controls. Accordingly, small differences between disorders with intermediate familial loads would not be expected to reach statistical significance. We, therefore, cannot exclude the possibility of small increases of the familial loadings of PPD or depression in relatives of subjects with LOD.

The observed familial aggregation of psychiatric disorders may be explained by shared environmental factors and by genetic risk factors that influence the illness susceptibility. Broadly speaking, different disorders are likely to vary in the degree to which genetic and shared environmental factors contribute to their familial aggregation. Even so, genetic vulnerability factors are probably more important than shared environment when onset is characteristically in late life, as in AD and LOD. It is also likely that these prevalent late-onset conditions have heterogeneous causes and tend mostly to result from complex interactions of common genetic and environmental risk factors. These arguments should not detract substantially from the reported results and conclusions, which were based on comparisons across multiple groups of relatives. We acknowledge that our study could have been improved with inclusion of APOE (apolipoprotein E) genotypes for our probands and their relatives. Such genotypes were not included herein because we did not collect blood samples at the beginning of the study, and because some interviewed family members were reluctant to provide blood samples. Despite these limitations, we suggest that this is the largest and most comprehensive study yet published on familial aggregation and coaggregation of the common psychiatric disorders of old age. Our results suggest broadly that a family history of AD, EOD, and LOD all indicate an increased familial risk for the same, but not other, psychogeriatric disorders.

Accepted for publication August 16, 2000.
This study was supported by grant HE 2318/1-2 from the German Research Foundation.

Corresponding author and reprints: Reinhard Heun, MD, Department of Psychiatry, University of Bonn, Venusberg, D-53105 Bonn, Germany (e-mail: heun@uni-bonn.de).

REFERENCES

4. O’Connor DW, Pollitt PA, Roth M, Brook CFB, Reiss BB. Memory complaints and impairment in normal, depressed, and demented elderly persons identified in a community survey. Arch Gen Psychiatry. 1990;47:224-227.

